
THE SOUND OF FRICTION:

REAL-TIME MODELS, PLAYABILITY AND MUSICAL

APPLICATIONS

a dissertation

submitted to the department of music

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Stefania Serafin

June 2004



c© Copyright by Stefania Serafin 2004

All Rights Reserved

ii



I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Prof. Julius O. Smith III
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Prof. Christopher Chafe

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Prof. Perry R. Cook

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Prof. James Woodhouse

Approved for the University Committee on Graduate

Studies:

iii



Preface

Friction, the tangential force between objects in contact, in most engineering appli-

cations needs to be removed as a source of noise and instabilities.

In musical applications, friction is a desirable component, being the sound pro-

duction mechanism of different musical instruments such as bowed strings, musical

saws, rubbed bowls and any other sonority produced by interactions between rubbed

dry surfaces.

The goal of this dissertation is to simulate different instruments whose main ex-

citation mechanism is friction. An efficient yet accurate model of a bowed string

instrument, which combines the latest results in violin acoustics with the efficient

digital waveguide approach, is provided. In particular, the bowed string physical

model proposed uses a thermodynamic friction model in which the finite width of

the bow is taken into account; this solution is compared to the recently developed

elasto-plastic friction models used in haptics and robotics. Different solutions are also

proposed to model the body of the instrument.

Other less common instruments driven by friction are also proposed, and the

elasto-plastic model is used to provide audio-visual simulations of everyday friction

sounds such as squeaking doors and rubbed wine glasses.

Finally, playability evaluations and musical applications in which the models have

been used are discussed.
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Chapter 1

Introduction

1.1 Overview

Friction, the tangential force between objects in contact, in most engineering appli-

cations needs to be removed being a source of noise, energy loss, instabilities and

undesired vibrations.

From an auditory perspective, friction is constantly present in our everyday life.

The annoying sound of a brake, a squeaking door or a chalk sliding on a blackboard

are only few examples of the sonorities that frictional interactions between rubbed

dry surfaces can produce. Fortunately there also also pleasant sonorities that derive

from frictional phenomena: few examples are skilled bowed string players, rubbed

crystal wine-glasses and musical saws.

In this dissertation mathematical models that simulate friction sonorities are built,

by looking at friction as a source of noise and subtle variations part of the expressive

sonic phenomena considered to be desirable in music. In particular, the state of the

art friction models developed in haptic and robotics are studied and applied to a

musical context.

Starting from an efficient yet accurate physical model of a bowed string, simula-

tions of different instruments that have the same excitation mechanism are presented.

The ultimate goal is to provide a better understanding of the behavior of these in-

struments and to build real-time synthesis tools which composers and performers can

1



2 CHAPTER 1. INTRODUCTION

use to reproduce, explore and extend the sound of friction.

1.2 The sound of friction

Interest on friction sounds has usually been focused on the family of bowed string

instruments. Most of the special quality of a violin depends on the complex and subtle

range of vibrational behavior produced by a string excited by a bow. It is therefore

important to achieve a better understanding of the interaction between a bow and a

string, both for musical acousticians and for instrument makers.

It is also interesting to study and simulate less popular musical instruments driven

by the same excitation mechanism as the bowed string. Some examples are the mu-

sical saw, the glass harmonica, the Tibetan bowl, bowed bars, bowed vibraphones

and bowed cymbals. As contemporary music sees lots of these instruments in scene,

mathematical and computer models of such instruments can provide a better un-

derstanding of their behavior as well as new tools for musicians and composers to

experiment between real and virtual friction sounds.

1.3 Scope of the thesis

This thesis proposes physical models of friction driven instruments built using differ-

ent configurations of digital waveguides [117, 114]. One dimensional digital waveg-

uides are an efficient synthesis technique used to model quasi-harmonic resonators

such as strings and tubes. One dimensional waveguides are used to simulate bowed

strings. The linear string resonator is connected to different refined models of the

bow-string interaction, as described in Chapter 3. While Chapter 4 focuses only on

the bowed string, Chapter 5 proposes models of other friction driven instruments with

the goal of obtaining computationally efficient simulations. Extensions of traditional

digital waveguides are discussed, such as banded waveguides and banded waveguides

meshes.

In general, the main interest of this dissertation is to look at physical models

of friction driven musical instruments from different perspectives. From a scientist’s
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point of view, the interest is to provide a better understanding of the sound production

mechanism of the instruments of the violin family and of other instruments driven by

friction. From the engineer’s point of view, the goal is to obtain accurate yet efficient

numerical models of these instruments. From the computer scientist’s point of view

a real-time implementation of these instruments is provided. From the musician’s

point of view, the goal is to use these tools to recreate the sonorities of friction and

to extend them in a compositional context.

This work therefore provides new results and discussions in musical acoustics,

real-time sound synthesis, digital signal processing and musical applications, aiming

both to achieve a better understanding of friction-driven musical instruments, and to

build new tools that composers can use to manipulate sounds in real-time. In fact,

in order to allow the possibility of reproducing all the subtleties of a complex action

such as bowing and at the same time to manipulate them in real-time in a personal

computer, all these models have been implemented in the Max/MSP [141], Pure Data

(pd) [89] and Synthesis Toolkit (STK) [19] environments.

An accurate study of the playability of these models shows how recent discoveries

on friction and bowed string interaction [138] improve the playability of virtual bowed

strings. Models that incorporate recent research on the thermodynamical behavior of

the bow in contact with the string, together with models for the bow-hair compliance,

are also discussed.

Physical models of musical instruments are interesting for acousticians as a tool

to validate the equations and theories on a particular instrument. It is a challenge

to completely understand the physics of an existing instrument. This is one of the

reasons why this approach to physical models is interesting to scientists. On the

other end, merely focusing on a faithful reproduction of existing musical instruments

is not appealing for composers and performers. This concept is well-known in com-

puter music, yet little effort has been done to create physical models that extend the

possibilities offered by traditional instruments. This thesis addresses both the acous-

tician’s and the composer’s interest, providing on one side accurate models of existing

musical instruments and on the other side extended techniques to create sonorities

that existing instruments cannot physically obtain.
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1.4 Outline

The remaining chapters of this dissertation are organized as follows. Chapter 2 de-

scribes acoustics of friction, and describes different models to simulate frictional in-

duced vibrations.

Chapter 3 describes acoustics and previous research on bowed strings, and Chapter

4 proposes an accurate yet efficient model of a bowed string.

Chapter 5 examines other instruments whose main excitation mechanism is fric-

tion, such as the musical saw, the glass harmonica, the Tibetan bowl and the bowed

cymbal. Other everyday sounds derived by friction, such as squeaking doors and noise

brake are also described.

Chapter 6 proposes methods for evaluating playability for virtual bowed string,

from a musical acoustician’s perspective, and Chapter 7 describes issues about musical

applications and control of friction driven musical instruments. Chapter 8 presents

conclusions and suggestions for future work.



Chapter 2

Friction

2.1 Introduction

Friction, the tangential force between sliding surfaces, is a phenomenon that con-

stantly appears in our everyday life. Friction develops between sliding surfaces, and

fulfills a dual role of transmitting energy from one surface to another and dissipating

energy of relative motion [3].

Although friction appears in many mechanical systems, friction phenomena are

not completely understood and are particularly complex since are caused by different

physical mechanisms. Friction-excited vibrations common to our sonic environment,

such as brake noises, chalks on blackboards, chairs sliding on a hard pavement derive

from the energy that friction provides to a system and they are just a small sample

of all the sonorities that hard rubbed surfaces can produce.

Friction sounds have also a slightly more appealing musical dimension, which

appears, for example, in the sonorities of a bowed string or of a rubbed wineglass.

Considering that friction is abundant in nature, friction research has a long history,

and friction studies are still active nowadays. As a nonlinearity, friction is a challenge

for researchers in dynamical systems, robotics and engineering in general.

In this chapter we examine friction induced vibrations with a focus on stick-slip

oscillations. We propose an overview of the history of the study of friction in general

and more specifically as a sonic phenomenon, and we describe different friction models

5
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that will be used in the rest of this dissertation.

2.2 Historical overview of friction research

Friction is a word traceable to 15th century english, denoting the “force that resists

relative motion between two bodies in contact” [73], and derives from the Latin word

fricare, which means “to rub”.

The awareness of friction existed in ancient times, although the earliest exploita-

tions of it where not accompanied by scientific explanations [30]. Significant examples

are the advent of fire making based on rubbing wood, the development of the bow as

a hunting tool and the development of wheels.

Perhaps the first scientist who made some observations about friction was Aris-

totle, who identified the existence of this force [6]. Aristotle analyzed the motion of

bodies under a constant force resisted by friction, such as a body being pulled or

pushed along the ground, and stated that to obtain an uniform motion a constant

force must be exerted to overcome friction.

It wasn’t until the end of the 15th century, however, thanks to Leonardo da Vinci,

that friction was treated in a scientific manner. The main observations made by

Leonardo were that friction does not depend on the contact area but on the normal

force exerted on the sliding bodies.

Leonardo’s laws of friction apply to a remarkably large range of situations; Leonardo

made the observation that different materials move with different ease. He claimed

that this was a result of the roughness of the materials in question; thus, smoother

materials have smaller friction. His results were never published; the only evidence

of their existence is in his vast collection of journals.

In the late 16th century, Galileo Galilei in his Dialogues Concerning Two New

Sciences made some observations on the act of bowing a viola string or rubbing the

rim of a wineglass with a finger. He observed that “a glass of water may be made

to emit a tone merely by the friction of the finger-tip around the rim of the glass”.

He also noted the following event: in a large glass full of water, first the waves are

spaced uniformly, but, once the tone of the glass jumps one octave higher, the waves
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divide in two.

Guillaume Amontons (1663-1705) rediscovered the two basic laws of friction that

had been discovered by Leonardo Da Vinci, and proposed an original set of theories.

He believed that friction was predominantly a result of the work done to lift one

surface over the roughness of the other, or from the deforming or the wearing of the

other surface. For several centuries after Amontons’ work, scientists believed that

friction was due to surfaces’ roughness.

Chladni in 1787 published a treatise [16] in which he described a technique of

sprinkling sand on vibrating plates to produce oscillations induced by friction. Ex-

citing plates of various shapes with a bow, he obtained patterns of different shapes

which were demonstrated to Napoleon in 1809.

Important improvements on the research of frictional induced vibrations were

obtained by Helmholtz, who in 1860 built a vibrational microscope, using which he

was able to describe the motion of a string excited by a bow, which nowadays is

known as Helmholtz motion in his honor.

Helmholtz observed that the string is attached to the bow for the longest part of

its period, detaching only once per period. This motion was coined as stick-slip by

Bowden and Leben [9], and it is a vibratory phenomenon that is sometimes observed

at frictional interfaces. Other examples of stick-slip oscillations include the squeaking

of a door, the sound of a chalk on a blackboard and the rubbing of a wineglass. Stick-

slip motions appear because the static friction coefficient is greater than the dynamic

one. When two objects are stuck together, if a force is applied to one, the friction

ramps up to the static friction limit and break away can occur. After break away the

object can begin sliding for a small amount and then sticks again.

Further observations were made by Coulomb, who treated the difference between

static and dynamic friction coefficients observing that static friction is always higher

than dynamic friction.

Coulomb laws of friction are still used in some applications, since, although they

represent a simplified version of reality, they can nevertheless provide interesting

insights into the mechanics of objects in contact. It is with Coulomb that classical

models of friction started to develop.
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At the beginning of the 20th century, Stribeck performed some experiments on

sliding bearings, showing the dependence of the friction coefficient on the sliding

velocity. He created some curves, now known as Stribeck curves, in which it is clear

how the frictional force drops steeply with increasing relative velocity between bodies

in contact.

More recently, a new class of dynamic friction models has been developed. In

these models, the dependence of friction on the relative velocity between bodies in

contact is modeled using a differential equation. In the following section static and

dynamic friction models are described in details.

2.3 Static friction models

In the static models, friction depends only on the relative velocity between two bodies

in contact. In this section the evolution of static friction models is reviewed.

2.3.1 Coulomb’s friction model

The first mathematical friction model was proposed by Coulomb in 1773 [36]. This

model, despite its simplicity, is able to capture the basic physical behavior of friction-

ally induced vibrations.

The main idea behind the model is that friction opposes motion and its magnitude

is independent of the velocity v of the contact area. The model can be described as:

F = FC × sgn(v) (2.1)

where the friction force FC is proportional to the normal load, i.e. FC = µFN , where µ

represents the friction coefficient and FN represents the normal load. This description

of friction is represented in Fig. 2.1 a).

Notice how Coulomb friction does not specify the friction force for zero velocity.

Notice also how FC depends on the normal load FN .
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Figure 2.1: Examples of static friction models. Figure a) shows Coulomb friction,
Figure b) shows Coulomb plus viscous friction, Figure c) shows stiction plus Coulomb
plus viscous friction, and Figure d) shows the Stribeck effect.

2.3.2 Viscous friction

In the 19th century the theory of hydrodynamics was developed, leading to expressions

for the friction force caused by the viscosity of lubricants [92]. The term viscous

friction is used for this force component, and it is usually described as:

F = Fvv. (2.2)

Viscous friction is often combined with Coulomb friction as shown in Fig. 2.1 b).

2.3.3 Stiction

Stiction is the short term for static friction, and describes the friction force at rest.

The idea of a friction force at rest higher than Coulomb friction was introduced in

1833 by Morin [75]. Friction at rest needs to be modeled using the external force Fe,
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as follows:

F =

{

Fe v = 0 and |Fe| < FS

FS × sgn(Fe) v = 0 and |Fe| ≥ FS

where FS is the static (breakaway) force. So at zero velocity stiction can take any

value between −FS and FS. The classical friction components can be combined in

different ways, as Fig. 2.1 part c) shows.

2.3.4 Stribeck curves

At the beginning of the 20th century, Stribeck performed some experiments on sliding

bearings, showing the dependence of the friction coefficient on the sliding velocity.

He created some curves, now known as Stribeck curves, in which it is clear how the

frictional force drops steeply with increasing relative velocity between the two bodies

in contact. In his honor, the deep drop of friction while increasing the relative velocity

is known as Stribeck effect. As Fig. 2.1 part d) shows, friction does not decrease

discontinuously as in Fig. 2.1 part c), but the velocity dependence is continuous. So

a more general description of friction is

F =















F (v) if v 6= 0

Fe v = 0 and |Fe| < FS

Fs × sgn(Fe) v = 0 and |Fe| ≥ FS

where F (v) is an arbitrary function that looks like in Fig. 2.1 part d).

Different parametrizations have been proposed for F (v). In chapter 3 the parametriza-

tions proposed to simulate a bowed string are described. Let us now examine more

general parametrizations of this function.

A common form for the friction function is given by [80]

F (v) = fc + (fs − fc)e
−|v/vs|δs

+ fvv (2.3)

where vs is called Stribeck velocity and Fv represents viscosity. Fig. 2.2 shows the

shape of F (v) for fc = 0.3, fs = 0.8, δS = 2, vs = 0.5 m/s for different values of the
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parameter Fv.
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Figure 2.2: Friction model of Eq. 2.3 for different values of Fv.

2.3.5 Rate and state friction models

In the rock mechanics community, rate and state friction models have been developed

[25] to simulate dynamics of earthquakes. Tectonic earthquakes, in fact, occur by

sudden slippage along a pre-existing fault or plate surface. The observation that

earthquakes must be the result of a stick-slip frictional instability was made in 1966

by Brace and Byerlee [11].

2.4 Dynamic friction models

More recently, a new class of dynamic friction models has been developed. In these

models, the dependence of friction on the relative velocity between the two bodies

in contact is modeled using a differential equation. Dynamic models are also able to

take into account pre-sliding displacement, i.e., displacement that occurs just before
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a complete slip takes place.

2.4.1 The Dahl model

The Dahl model and more general dynamic friction models are better understood

considering Fig. 2.3 [43]. Let us consider two objects connected by a spring; let x

be the moving object and w the adhesion point. Moreover, let z = x − w describe

micromovements between the two objects. Dynamic models define the friction force

to be proportional to z, as is the two objects were attached by a spring. The quantity

|z| is not allowed to exceed a small value zmax > 0 called breakaway distance (which

corresponds to the breakaway force). When |z| reaches zmax, the contact becomes

fully tense and w relocates. While the contact is fully tense, ẋ = ẇ and ż = 0. This

is when sliding takes place.

x = 0

x = x1

x = x2

w = 0

w = 0

w = w2 = x2 − zmax

Figure 2.3: Two objects connected by a spring.

The first dynamic model, proposed by Dahl in 1968 [22], has as starting point

the stress-strain curve in classic solid mechanics shown in Fig. 2.4. Dahl modeled the

stress-strain curve using the following differential equation:

∂F

∂x
= σ

(

1− F

FC
sgn(v)

)α

(2.4)
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x

F

Fc

−Fc

Figure 2.4: Friction force as a function of displacement in the Dahl model.

where x is the displacement, F is the friction force, FC is the Coulomb friction force,

σ is the stiffness coefficient and α determines the shape of the stress-strain curve.

By multiplying Eq. (2.4) by v, it results:

∂F

∂x
=
∂F

∂x

∂x

∂t
=
∂F

∂x
v = σ

(

1− F

FC
sgn(v)

)α

v (2.5)

For α = 1 this gives:
∂F

∂t
= σv − F

FC

|v| (2.6)

introducing F = σz the equation becomes:

∂z

∂t
= v − σ|v|

FC

z (2.7)

in steady state (ż = 0) it becomes:

z =
FC

σ
sgn(v)F = FCsgn(v) (2.8)

so the steady state version of the Dahl model is Coulomb friction.

Dahl’s model is a simple dynamic model that captures many phenomena such

as hysteresis. In this model, friction depends only on displacement. Dahl’s model,

however, does not account for the Stribeck effect.
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2.4.2 The LuGre model

An extension to the Dahl model is the LuGre model, whose name comes from the two

laboratories in which it was developed (Lund and Grenoble), in which the Stribeck

effect is included [24, 43]. The LuGre model is related to the bristle interpretation

of friction as in [41]. The idea behind the bristle interpretation of friction is shown

in Fig. 2.5. Let’s consider two facing surfaces with bristles extending from each, as
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Figure 2.5: Bristle model.

shown in Fig. 2.5. The friction between the two surfaces is assumed to be caused by

a large number of bristles, each contributing a fraction of the total friction load. The

load contributed by each bristle is proportional to the strain of the bristle. When

the strain exceeds a certain level the bond is broken, as shown in Fig. 2.6. In LuGre

Direction of motion

Figure 2.6: Contacting asperities act as small stiff springs with dampers, giving rise to
microscopic displacements (stick) and return forces. If the displacement becomes too
large, the junctions break. At this break-away displacement true, macroscopic sliding
(slip) starts.

model, friction is modeled as the average deflection of the bristles. When a tangential

force is applied, the bristles deflect like springs. If the deflection is large enough, the

bristles start to slip. Denoting by z the average bristle deflection, the model is given
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Figure 2.7: The LuGre single-state averaged model.

by:
∂z

∂t
= v − σ0

|v|
g(v)

z (2.9)

F = σ0z + σ1(v)
∂z

∂t
+ f(v) (2.10)

where σ0 is the stiffness of the bristles, and σ1(v) is the damping. So the phys-

ical interpretation of this model is as follows. Contact surfaces are very irregular

at microscopic level. This can be visualizes as two rigid bodies that make contact

through elastic bristles. When a tangential force is applied, the bristles will deflect

like springs and dampers which gives rise to the friction force. The average deflection

of the bristles corresponds to the internal state of the dynamic friction model z.

The idea of the LuGre model, is to generalize the Dahl model to obtain the

Stribeck effect.

In steady state, the LuGre model is given by:

z =
g(v)

σ0
sgn(v)F = g(v)sgn(v) + f(v) (2.11)

The LuGre model is described in Fig. 2.7. This model is as simple as the Dahl model,

and captures many aspects of friction such as the Stribeck effect and stick-slip motion.

However, LuGre exhibits drift for arbitrarily small external forces, which is spurious.

This effect has been explained in [26] by observing that LuGre does not allow a purely

elastic regime for small displacements. Therefore, a class of elasto-plastic models has

been proposed in [26], where the drawbacks of LuGre are overcome. These models

have been applied in [42] to haptic rendering applications.
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2.4.3 Elasto-plastic models

In order to improve the LuGre model and allow a purely elastic regime, a class of

elasto-plastic models has been proposed [26]. In these models, the drawbacks of the

LuGre model are overcome using the following formulation for the bristle displacement

ż(v, z) = v

[

1− α(z, v)
z

zss(v)

]

(2.12)

where α(z, v) is an adhesion map which controls the rate of change of z in order to

avoid drift.

The elasto-plastic model will be used extensively in this dissertation, and therefore

it requires a more detailed description. Eq. (2.12), together with:

f(z, ż, v, w) = σ0z + σ1ż + σ2v + σ3w, (2.13)

summarizes the elasto-plastic modeling approach. Eq. (2.12) defines the averaged

bristle behavior as a first-order system: z and ż can be interpreted as the mean

bristle displacement and velocity, respectively, while v is the relative velocity between

the two bodies in contact. Eq. (2.13) states that the friction force f results from the

sum of three components: an elastic term σ0z, an internal dissipation term σ1ż, and

a viscosity term σ2v which appears in lubricated systems. As explained in [79], the

viscosity term needs not be linear and may be a more complicated function of the

relative velocity. A fourth component σ3w is added here to Eq. (2.13), which is not

part of the original formulation by Dupont et al. [26]. The term w(t) is a pseudo-

random function of time which introduces noise in the force signal, and is therefore

related to surface roughness. The auxiliary functions α and zss can be parametrized

in various ways. Following [24], zss is defined as

zss(v) =
sgn(v)

σ0

[

fc + (fs − fc)e
−(v/vs)2

]

, (2.14)

where fc, fs, and vs are defined as before, and the subscript ss in zss stands for
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“steady-state”. Following [26] α is defined as:

α(v, z) =



























0 |z| < zba

αm(v, z) zba < |z| < zss(v)

1 |z| > zss(v)















if sgn(v) = sgn(z)

0 if sgn(v) 6= sgn(z)

(2.15)

The function αm(v, z), which describes the transition between elastic and plastic

behavior, is parametrized as

αm(v, z) =
1

2

[

1 + sin

(

π
z − 1

2
(zss(v) + zba)

zss(v)− zba

)]

. (2.16)

and is shown in Fig. 2.8. Therefore the parameter zba defines the point where α starts

to take non-zero values, and is termed breakaway displacement.

Suppose that a constant relative velocity v is applied, starting from zero condi-

tions.

1. As far as z remains small (z < zba), then α = 0 and the first equation in (2.13)

states that ż = v. This describes presliding elastic displacement: the (mean)

bristle deflection rate equals the relative velocity and the bristle is still anchored

to the contact surface.

2. When z exceeds zba, the mixed elastic-plastic regime is entered, where |ż| < |v|.

3. After the transient mixed regime, the first-order equation in (2.13) converges

to the equilibrium ż = 0, and steady-state is reached with purely plastic bristle

displacement. Note that ż = 0 means z = zss. It is now clear why zss (z at

steady-state) has been given this name.

Note how in steady state f(v) = σ0zss(v). In other words, at steady-state the elasto-

plastic model converges to the kinetic model.

In the following chapters, the friction models introduced will be applied to an

accurate bowed string physical model, and to other friction driven musical instru-

ments. It is especially interesting to analyze the transient behavior of these friction
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Figure 2.8: The shape of the α function

models, and how they affect the playability of virtual instruments. This is the topic

of Chapter 6.



Chapter 3

The bowed string

3.1 History of the violin

The violin as known nowadays evolved from different musical instruments including

the Greek lira, the Indian rabab, the renaissance fiddle and several other instruments

dating back to a few thousand years B.C.

By the Middle Ages, around the eleventh century, the vielle and the rote had come

into existence. Around this time, a fingerboard was added to such instruments.

The 12th century brought the last evolution of the vielle which, at that time,

looked similar to a modern guitar. It was a widely used instrument during that

period due to its ease of handling and its big tonal range. Throughout the 11th and

12th centuries ribs were added, as well as the tailpiece and a bridge. Three other

instruments appeared before the 15th century, one called the viola da gamba, since it

was held on or between the knees, the lira da braccio, and the viola da braccio.

The viola da braccio, which had originally three or four strings, became a four-

stringed instrument and it is likely the closest predecessor of the contemporary violin

[32]. The sound holes changed their shape toward the f shape used nowadays, from

which the name f-holes derives.

19
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3.2 The violin

The different components of a violin which contribute to the resulting sonorities are

shown in Fig. 3.1.

Figure 3.1: Different components of a violin, from [32].

The sound of a violin depends on the transfer of vibrations from the bowed string

through the bridge to the body of the instrument. All these components, together with

the way they are coupled, contribute to the characteristic sound of this instrument.

First of all, the role of the strings is essential. The strings provide the driving force

that brings the body into vibration.

3.2.1 The Helmholtz motion

As the bow is drawn across the strings, strings move back and forth in a motion

similar to the one shown in Fig. 3.2. This motion is known as Helmholtz motion, in

the honor of the scientist who discovered it.
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Figure 3.2: The idealized Helmholtz motion. The string moves in time from position
1 to position 8. The rectangle represents the bow.

The Helmholtz motion considers an ideal flexible string, rigidly terminated. The

bow is assumed to be perfectly rigid and to be in contact with the string in a single

point. In this idealized situation, the shape of the string consists of two straight

lines joined by a corner known as “Helmholtz corner”. Helmholtz studied the motion

of the bowed string at the bowing point and at other points along the string by

observing an illuminated speck of starch attached to an otherwise blackened string,

using what he called a vibration microscope. This instrument allowed him to observe

the characteristic “sawtooth” motion of a bowed string. In normal conditions the

string remains “stuck” to the bow hair and travels along with it for a considerable

fraction of each vibratory cycle, after which it flies back abruptly to begin the next

cycle, which takes place at very nearly the first-mode frequency of the string.

Although every player is trying to achieve the Helmholtz motion, different per-

turbations from this ideal situation exist, and will be discussed in Chapter 6. In that

chapter the different kinds of regimes produced by the physical models described in

chapter 4 will be examined.
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3.3 The violin body

The violin body acts as a resonator for the vibration generated from the strings. The

coupling of air cavity modes and top and back plate modes produces the complex

filtering which contributes strongly to the characteristic timbre of the violin.

The impulse response of a violin body is shown in Fig. 3.3.1 The bottom of

Fig. 3.3 shows the input admittance. At low frequencies, the resonances of the whole

body dominate, except for the 460 Hz resonance and the air resonance [55]. With

increasing frequency, a large number of top and back plate resonances will dominate

the body vibration of a violin. At high frequencies the bridge will give a major

contribution. The sound post gives a large asymmetry at low frequencies. The violin

body therefore acts as an acoustical amplifier which gives two kinds of amplification.

First the vibration of the strings results in the vibration of the body walls, since the

vibrating string produces a vibration force on the bridge, which is transmitted via the

bridge to the top plate and thereafter to the complete body. Secondly, the resonances

of the violin body give extra amplification at specific frequencies.

3.4 Research on bowed strings

The first scientific investigations of vibrating strings are credited to the Greek philoso-

pher Pythagoras, who, in the 6th century B.C., noticed some important relationships

between string length and pitch.

Preliminary observations regarding the sound of friction for bowed objects were

made by Galileo Galilei in the 16th century [35]. Galileo noticed that when a brass

plate is scraped with an iron chisel, the scraping produces a sharp whistling sound.

In the 18th and 19th century, Savart directly experimented with violin construc-

tion and form. He studied modes and vibration of violin’s plates, using the technique

previously developed by Chladni [16], which consisted of sprinkling plates with fine

powder and putting them into vibration using a violin bow. This technique was also

used to study the vibrational modes of a trapezoidal violin such as the one shown in

1Courtesy of Jim Woodhouse.
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Figure 3.3: Top: impulse response of a violin body. Bottom: input admittance of a
violin body.

Fig. 3.4.

Elements of the violin as a musical instrument were extensively studied by Helmholtz

in [130]. In his monumental work he described the motion of a bowed string as ex-

plained in the previous section, and he also dealt with psychological investigations of

the tones produced by the instrument.

Later on, Lord Rayleigh [91] explored vibrational characteristics of many media

and developed one of the first mathematical descriptions of the vibration of a bowed

string.

During the period from 1909 through 1921, the Indian physicist C. V. Raman

published a series of papers on the properties of bowed strings [90]. Raman’s analysis

of string vibrations confirms and greatly extends Helmholtz’s work, since the effect
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Figure 3.4: Savart’s original trapezoidal violin. From the Ecole Polytechnique collec-
tion, France.

of string damping was for the first time taken into account.

The technological developments of the 20th century made it possible for different

researchers to investigate the motion of a bowed string and to analyze the body of the

instrument in greater detail. In particular, Schelleng used electrical circuit methods to

formulate the behavior of string-body vibration, as well as to derive the first explicit

mathematical formulas for the limits of maximum and minimum bow force in violin

playing. This issues will be discussed in detail in Chapter 6.

In the second half of the 20th century, mathematical descriptions of vibrating

strings were combined with computer simulations, as described in the following sec-

tion.

3.5 Physical models of bowed strings

Starting in the second half of the 20th century, improvements in hardware technology

allowed the development of synthesis techniques to simulate the sound of musical

instruments on a computer. In particular, digital sound synthesis by physical mod-

els started to develop. Sound synthesis by physical models requires two main steps:

the description of a vibrating structure by the principles of physics and the trans-

formations of these laws into discrete-time and discrete-space models which can be
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implemented in software.

The bowed string is a complex nonlinear dynamical system. Mathematical formu-

lations that describe its behavior have seen lots of improvements also thanks to the

availability of computers which allow to digitally visualize and reproduce the behavior

of such instruments.

A simple mathematical model of a bowed string was proposed by Rayleigh [91].

Rayleigh compared the behavior of a bow driving a string to the one of a mass moving

in a conveyor belt, as shown in Fig. 3.5. This model has been used in many simulations

of different dynamical systems driven by friction [88]. As shown in Fig. 3.5, a conveyor

belt is moving at constant speed v0. Coulomb friction between a block of mass m and

the belt opposes the mass motion. The block is restrained by a spring with constant

k. The equations of this model are derived in [96].

Figure 3.5: Rayleigh’s mass-spring model of a bowed string. A mass m sits upon a
conveyor belt which moves with uniform velocity v0.

Friedlander [34] and Keller [60] explored the mathematical properties of simple

bowed string models which assumed a perfectly sharp Helmholtz corner.

The impossibility for the Helmholtz corner to be perfectly sharp, due to losses and

dispersion of the string was first pointed out by Cremer, who also wrote a landmark

book on violin research which at the time represented the state of the art in the field

[21].

Starting from these pioneering research efforts, and thanks to advances in hard-

ware and software technology, different physical modeling techniques have developed

during the past 20 years.
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Physical modeling methods can be divided into five categories [125]:

1. Exciter-resonators models.

2. Vibrating mass-spring models.

3. Modal synthesis.

4. Numerical solution of partial differential equations.

5. Digital waveguides.

In the remaining part of this chapter the use of such five types to simulate a bowed

string is described.

3.5.1 Exciter-resonators models

“Exciter-resonator” is a general term used to represent a system in which a source

of energy (the exciter) is fed into a resonating structure. In a general sense, all

the physical modeling techniques mentioned above can be seen as belonging to the

exciter-resonator paradigm. In the case of the bowed string, the exciter is the bow

when interacting with the string, and the resonator is given by the vibrating strings

coupled to the body.

In [71], McIntyre, Schumacher and Woodhouse describe a general class of so-called

self-sustained oscillators, i.e., systems in which sound is produced as long as a source

of energy is fed into a system. Examples of self-sustained oscillators examined in

[71] are a flute, a violin and a clarinet. These instruments are distinguished from the

so-called transient instruments, i.e., instruments in which a transient source of energy

is fed into a system, at which point the system starts and continues to oscillate until

damped. Examples of transient instruments are percussion instruments, plucked and

struck strings.

In [71], a simple time-domain simulation of a bowed string is proposed as follows.

This algorithm is nowadays known as MSW algorithm, in the honour of the researchers

who developed it. Let us consider velocity traveling waves that propagate to and from
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Figure 3.6: A general oscillator made of a linear and nonlinear component connected
in a feedback loop.

the two extremities of a string, which are called the bridge and the nut, and meet at

the bow point.

First of all, the contribution of the reflected waves vin and vib coming from the

nut and the bridge respectively are summed at the bow contact point:

vh = vin + vib

where vh is the notation used in [71] to denote the historical (i.e., known) string

velocity. At this point, two variables are considered, which are the transverse string

velocity v and the frictional force f . These quantities are connected in two different

ways, represented by the following equations:

f = 2Z(v − vh) (3.1)

f = µ(v − vb)fb (3.2)

where Z is the wave impedance of the string, vb is the bow velocity, fb is the bow force,

v is the velocity of the string at the contact point and µ is the frictional force. As

shown in Eq. (3.2), to a first approximation it is possible to assume that the frictional

force simply depends on the relative velocity between the bow and the string (v− vb)

and on the bow force fb. Once the friction force f has been calculated, two traveling

waves von and vob resulting from the bow string interaction propagate toward the nut
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and the bridge and are calculated as follows:

von = vib + f/(2Z)

vob = vin + f/(2Z)

(3.3)

since

v = von + vin

= vob + vib.

Such outogoing velocities reflect again at the two extremities of the string and

meet at the bow point, where it is possible to calculate the historical velocity vh

which at this time step is given by the sum of the two new contributions. This

algorithm, which will be widely used in Chapter 4, is summarized in the following

box.

for n = 1 . . . samples

1) Compute vh from vin and vib

2) Solve f = 2Z(v − vh)

and f = µ(v − vb)fb

with f and v as unknown

3) Compute von = vib + f/(2Z)

vob = vin + f/(2Z)

end

TIme domain simulation of bow-string contact is also used in the digital waveguide

approach, which will be described in Sec. 3.5.5.
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3.5.2 Vibrating mass-spring models

Another approach to simulate the vibration of a string as well other vibrating systems

is the one developed by Cadoz and coworkers [13]. They suggest to create complex

physical models by connecting basic mechanical elements such as masses, dampers

and springs.

In 1985 the first real-time bowed string simulation based on such particle-interaction

systems was proposed [13]. In it, the string was represented by a set of 25 to 60 masses

linked by visco-elastic elements.

The system implementing bowed string physical models as well as other vibrating

structures is called Cordis-Anima. In it elements that receive forces and calculate

positions are found, and interaction elements that calculate a force according to the

positions of the other elements.

The basic elements of the Cordis-Anima system are:

1. point masses

2. ideal springs

3. ideal dampers

The Cordis-Anima system is still widely used and developed at the center Acroe in

Grenoble, where Cadoz and coworkers can now take advantage of the development in

hardware technology to create complex vibrating systems that work in real-time. The

Cordis-Anima environment presents a powerful combination of physically-modeled

audio-visual simulations used in virtual reality and computer music compositions.

3.5.3 Modal synthesis

Another powerful synthesis technique inspired by the physics of vibrating objects with

a strong link to spectral models is modal synthesis. The modal synthesis approach has

been widely adopted in the sound synthesis community. As few important examples,

Klatt used it to simulate a formant based speech synthesizer [61], Serra adopted it

to simulate bar percussion instruments [111], Wawrzynek used modal synthesis for
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VLSI computation [131]. Other applications of modal synthesis to the simulation of

musical instruments were proposed by Adrien [2, 1].

Modal synthesis is based on the premise that many sound-producing objects can

be represented as a set of vibrating substructures which are defined by modal data.

Recently modal synthesis has been widely adopted in the computer music com-

munity for simulation of audio effects and sounding objects in general [20, 93, 83].

Concerning the bowed string, in [5] a detailed simulation of how a modal resonator

can be coupled to a friction excitation is described. The approach derived in [5] is

described in the following.

Let us consider the equation of an ideal vibrating string:

m
∂2y

∂t2
= T

∂2y

x2
− η∂y

∂t
+ F (x, t) (3.4)

of mass m, length L and dissipation η, where c2 = T/m, and F represents external

forces on the string. All the solutions of Eq. (3.4) can be formulated in terms of

the modal parameters mn = µL/2 (∀n), ωn = nπc/L, ηn, and modeshapes φn(x) =

sin(nπx/L), for n = 1, 2, ..., N , where the mode number N is arbitrarily chosen.

In the modal domain, the response of the string can be expressed as:

[M ]Q̈(t) + [C]Q̇(t) + [K]Q(t) = Ξ(t) (3.5)

where

[M ] = diag(m1, ..., mN ),

[C] = diag(2m1ω1ζ1, ..., 2mNωNζN),

[K] = diag(m1ω
2
1, ..., mNω

2
N),

{Q(t)} = < q1(t), ..., qN(t) >T ,

{Ξ(t)} = < χ1(t), ..., χN(t) >T
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At any time, the response of the system can be calculated by modal superposition:

y(x, t) =
N
∑

n=1

φn(x)qn(t) (3.6)

For given external excitation and initial conditions, the previous system of equations

can be integrated using an adequate time-step integration algorithm. It is possible

to show [83] that modal synthesis can be implemented by using resonant filters in

parallel.

The right side of Eq. (3.5) contains all the nonlinearities of the system. In the

case of the bowed string, therefore, the second term contains the frictional interaction

between the bow and the string.

3.5.4 Numerical solution of partial differential equations

In [44], Hiller and Ruiz proposed a numerical solution to the partial differential equa-

tion representing a bowed string. They were the first to take the approach of numer-

ically solving the equation of a vibrating string for sound synthesis purposes.

A similar approach which uses finite differences to simulate a bowed string was

proposed in [85]. The starting point is a variation of the wave equation of Eq. (3.4):

m
∂2y

∂t2
= T

∂2y

x2
− η∂y

∂t
+ Sj

∂3

∂x2∂t
(3.7)

in which the last term represents energy losses due to internal viscous friction.

In order to integrate Eq. (3.7), the authors decompose the instantaneous shape of

the string into a set of harmonic functions up to a certain order that is the highest

allowable spatial frequency for the string. The solution for the integration of spatial

variables is similar to the use of finite elements, since it is based on the decomposi-

tion into orthonormal functions. As in [5], the shape of the string is obtained by a

sinusoidal decomposition. For the integration of the time variables, finite differences

are used.

The model described was used by the Italian composer Michelangelo Lupone in
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the piece called Corda di Metallo premiered by the Kronos Quartet in Rome in 1997.

3.5.5 Waveguide synthesis

Digital waveguide models [113, 116, 114] have become popular in the last two decades

as an efficient synthesis technique suitable for real-time implementation.

The starting point of digital waveguides [71] is the ideal wave equation as solved

by D’Alembert [23]

∂2y

∂x2
= c2

∂2y

∂t2
(3.8)

where y is the displacement of the string, x the position along the string and c the

wave speed. D’Alembert showed that the wave equation has an explicit solution given

by:

y(x, t) = yr(x− ct) + yl(x+ ct) (3.9)

where yl and yr are interpreted as left-going and right-going traveling waves respec-

tively. Therefore, it is possible to consider the solution to the wave equation as a sum

of traveling waves, in which a single traveling wave is simulated using one delay line.

Therefore, an ideal vibrating string is simulated using a pair of delay lines, one for

each direction of traveling. In order to obtain a digital implementation, the traveling

waves are sampled in interval T is time and X in space as follows:

x→ xm = mX (3.10)

t→ tn = nT

where m and n represent the new space variables. The following relationship yields

simplest results:

c =
X

T
(3.11)

Substituting Eq. (3.11) into Eq. (3.9) we obtain, following [114]
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Figure 3.7: A simplified waveguide physical model of a vibrating string. The delay line
of N samples represents two traversals of the string, and LP represents the low-pass
filter that accounts for all losses during two traversals.

y(tn, xm) = yr(tn − xm/c) + yl(tn + xm/c) (3.12)

= yr

(

nT − mX

c

)

+ yl

(

nT +
mX

c

)

(3.13)

= yr(T (n−m)) + yl(T (n+m)) (3.14)

If y+(n) = yr(nT ) and y−(n) = yl(nT ), the two discrete functions y+(n − m) and

y−(n + m) can be interpreted as the output of an m-sample delay line whose input

are y+(n) and y−(n) respectively [114].

3.5.6 Accounting for losses

The previous derivations assume a lossless wave propagation. Such a situation does

not occur in reality. As a first approximation to real propagation losses, the substi-

tution

z−1 ← gz−1,

where |g| ≤ 1, is possible. Because the system is linear and time-invariant, the

distributed loss factors g can be commuted or lumped together and implemented at

discrete points. For a delay line of length N , the commuted factor would equal gN .

In general, since damping increases with frequency, a more accurate representa-

tion of propagation losses is frequency-dependent. To implement frequency-dependent
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losses, each scale factor g is replaced by an appropriately designed digital filter. Be-

cause the system is linear and time-invariant, these filter responses can also be com-

muted and implemented as a single string loop filter G(z). In Fig. 3.7 the low-pass

filter LP which accounted for losses while traversing the string was introduced. The

role of LP is to simulate frequency-dependent attenuation. By using a linear-time-

invariant filter, it is possible to provide an independent gain at each frequency, as

described in [114]. Digital filters which allow to simulate losses in a violin and cello

string are described in Chapter 4.

Before describing different bow-string interaction models proposed in the litera-

ture, the characteristics of the described synthesis techniques are summarized in Table

3.1.

3.6 Comparisons between the different techniques

The different synthesis techniques used to synthesize a bowed string are summarized

in Table 3.1. Until recently, finite differences and mass-spring systems could not be

implemented in real-time due to computational issues. However, improvements in

hardware technology are allowing such techniques to see real-time implementations.

The choice of the discretization technique to model resonators is usually based on

the structure of the resonator itself. For example, for quasi-harmonic systems such

as violin strings, usually digital waveguides are the preferred choice. However, for

systems which show a strongly inharmonic spectrum, usually other techniques such

as modal synthesis are preferred.

Technique Characteristics Reference

Finite differences Numerical solution of the wave equation. [85]
The MSW algorithm Precursor of digital waveguides. [71, 38, 39]
Digital waveguides Efficient for quasi-harmonic systems. [119, 14, 124,

45]
Modal synthesis Efficient for systems with few modes. [2, 5]
Mass-spring systems High computational cost. [13]

Table 3.1: Summary of physical modeling techniques used to simulate a bowed string.
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3.7 The bow-string interaction

“Classic” models of the bow-string interaction assume that friction depends only on

the relative velocity between the bow and the string, in a dependence similar to the

one shown in Fig. 3.8, in which friction exponentially decreases while the relative bow-

string velocity increases. The different shapes which the friction curve of Fig. 3.8 can

assume are discussed in Chapter 4.

In order to solve the interaction between the bow and the string, a graphical

solution to the system in Eq. (3.2) was first proposed in [34] and is represented in

Fig. 3.8 part a). Notice how, in a situation such as Fig. 3.8 part b) three intersections

can occur, as pointed out by Friedlander [34]. This ambiguity is solved using the

hysteresis rule proposed in [72] and described in Fig. 3.8, part c) and d): as the

string velocity increases, the bow remains in slipping mode until it reaches the capture

velocity vc. The string velocity then jumps to the bow velocity vb. The string remains

in stick velocity until it decreases to vr, at which point the maximum sticking force

is exceeded. The hysteresis rule therefore means that the solution point traverses a

different path for increasing relative bow spring speeds than for decreasing speeds.

The shape of the “classic” friction curve has been mathematically expressed in

different ways, which are described in the following section.

3.7.1 Mathematical formulations of the friction curve

Hyperbolic friction model

The hyperbolic model for the coefficient of bow-string friction is given by:

µ = µd +
(µs − µd)v0

v0 + v − vb
(3.15)

where v, vb and v0 are the string velocity, bow velocity and initial bow velocity,

respectively, and µd and µs are the dynamic and static coefficients of friction, respec-

tively. Notice that µs > µd. Typical values used in the literature are µs = 0.8 and

µd = 0.3 [100]. This model has been used for many years as a convenient mathe-

matical approximation which yields closed-form results for the bow-string interaction
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Figure 3.8: a) The solution of the bow-string interaction. b) Friedlander ambiguity.
c) Hysteresis rule for capture. d) Hysteresis rule for release.
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[72, 71, 134].

Double exponential friction model

The exponential model is given by [112]

µ = 0.4 e
v−vb

0.01 + 0.45 e
v−vb

0.1 + 0.35 (3.16)

where, as before, v and vb represent the velocity of the string and the bow, respectively.

This model fits a sum of two exponentials to friction measurements made during

steady sliding. As a result, any dynamic behavior is neglected in the establishment

of frictional force after a velocity change.

Other formulations of similar velocity dependent friction models have also been

proposed. For example, the friction model suggested in [5] is the following:

fs(xA, t) = −µ(v − vb)fbsgn(v − vb) if |v − vb| > 0 (3.17)

|fb(xA, t)| < µSfb if |v − vb| = 0 (3.18)

where, as before, fb represents the bow pressure, µs is the static friction coefficient

and µ(v− vb) represents the friction force (f = µdfb). The shape of µ proposed in [5]

is given by:

µ(v − vb) = µd + (µs − µd)e
−C|v−vb| (3.19)

with 0 ≤ µd ≤ µs, and C is a parameter that controls the decay time of the friction

coefficient.

The shape of the friction curve of Eq.(3.19) with µs = 0.4, µd = 0.2 and C = 5 is

shown in Fig. 3.9.

In [121] and efficient simulation of the bow-string interaction problem is proposed,

in order to facilitate a real-time implementation. The bow-string interaction is sim-

ulated by using a memoryless table lookup.
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Figure 3.9: Friction curve used in the simulations of [5].

Figure 3.10: Simplified bow table ρ proposed in [118].

Using the same notation as in Sec. 3.5.1, the equations of the model are given by

von = vib + ρ(vb − vh)(vb − vh)

vob = vin + ρ(vb − vh)(vb − vh)

(3.20)

where

ρ(vb − vh) =
r(v∆(vb − vh))

1 + r(v∆(vb − vh))
(3.21)

where v∆ = vb − v, and r(v∆) = 0.25Rb(v∆)/Rs, Rb represents the static friction

coefficient, Rs is the wave impedance of the string, vh = vin + vib represents the
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historical (past) velocity at the bow point and Rb is the friction coefficient of the

bow against the string. Rb is constant for |v∆| ≤ vc
∆, where vc

∆ is the capture and

breakaway differential velocity.

For |v∆| > vc
∆, Rb falls quickly to a low dynamic friction coefficient. The bow table

chosen in [121] is shown in Fig. 3.10. These equations are justified by the fact that

velocity input (which is injected equally in the left- and right-going directions) must

be found such that the transverse force of the bow against the string is balanced by

the reaction force of the moving string. If bow-hair dynamics are neglected, the bow-

string interaction can be simulated using a memoryless table lookup or segmented

polynomial such as the one shown in Fig. 3.10.

The flat portion corresponds to the portion of the bow “stuck” to the string,

while the outer section corresponds to the slipping part. The outer sections of the

curve give a smaller reflection coefficient corresponding to the reduced bow-string

interaction force while the string is slipping under the bow. Using this simplified

bow table, it is possible to avoid the iterative solver required when the bow-string

interaction is expressed through a nonlinear function. This friction model does not

account for hysteresis.2

Following Smith’s approach, other researchers recently proposed waveguide-based

bowed string physical models. For example, in [124] a waveguide bowed string physical

model is driven by a rule-based parameters’ engine, in order to increase its expres-

sivity. In [45] variations to the original waveguide models are also proposed. The

addition of random noise to the friction curve in order to simulate the characteristic

noise of a bowed string instrument was first proposed in [15], and recently used in

[85].3

Dynamic bow models

An interesting approach in order to obtain a dynamic model of the bow was proposed

in [2] and shown in Fig. 3.11.

2A nonlinear function generation apparatus which comprises hysteresis was developed by Yamaha
in a patent filled in 1990, patent number 613163.

3The addition of random noise to the friction curve was also suggested to the author by Knut
Guettler [37].
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Figure 3.11: Mechanical model for the bow as proposed in [2]. M represents the bow
wood, on which the player applies a force F0.

In it M represents the bow wood, on which the player applies a force F0, and m

represents the bow hair.

The equations proposed in [2] are given by

(Foy, Fcy) = [ZY ](Vy, vy) (3.22)

(Foz, Fcz) = [ZZ ](VZ , vz) (3.23)

where Foy and Fcy, Foz and Fcz represent the external forces applied on the masses

M and m, and Vy, vy and Vz, vz represent the velocities of the masses M and m in

the Oy and Oz directions.

In addition, the following relationship holds:

Fcy = −||Fcz||∆µ/[(1 + vy − vsy)/β] (3.24)

where Fcy is the sliding force applied by the string on the bow hair in the Oy direction,

Fcz is the sticking force applied in the Oz direction and v − vsy is the velocity of the

string relative to the bow hair, and β is a coefficient related to the bow hair rosin. In

this model, however, the friction curve is still represented using a velocity dependent

friction curve.
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3.7.2 Plastic friction models

The previous friction models assume that friction depends only on the relative velocity

between the bow and the string.

Recently, Smith and Woodhouse discovered that the behavior of friction at the

bow point is more complicated than a simple friction versus velocity dependence

[112]. If the force f and sliding velocity v are measured during stick-slip motion

with rosin at the interface, the results of the plots in the f − v plane are shown in

Fig. 3.12. This plot was obtained by rubbing two crossed cylinders of perspex loaded

together to give an approximatively circular contact area. One of the cylinders was

stationary, while the other was moving carrying a layer of rosin. In the plot the

dotted exponential curve represents the classic friction model, while the other curve

represents the measurements. From this plot, it is evident how the classic friction

models that consider friction as depending only on the relative velocity between the

bow and the string are not correct.
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Figure 3.12: Solid curve: coefficient of friction between two rosin coated surfaces,
adapted from [112]. Dashed line: steady state relationship.
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In [112] it has been suggested that friction depends on the variations of temper-

ature in the interfacial rosin layer. The explanations for this behavior are as follows:

during sticking the contact region cools by heat conduction into the bulk materials

behind the contact. This allows the shear strength of the interface and the friction

coefficient to reach a high value. Once sliding begins, the contact region is heated

by the work done against friction, the rosin layer weakens and the friction coefficient

falls.

In order to model this behavior, let’s consider T as an “average” contact temper-

ature, a circular contact of radius a and an uniform layer thickness δ. The friction

force can be expressed as

f = FNµ(T )sgn(vb − v) (3.25)

where FN is the normal bow force, vb is the bow velocity, v is the string velocity and

µ(T ) is the temperature dependent friction coefficient plotted in Fig. 3.13. This model
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Figure 3.13: Coefficient of friction as a function of contact temperature (in Celsius
above ambient), assuming a normal force of 3N and a contact radius of 0.5 mm.
Courtesy of Jim Woodhouse.

behaves better than the “classic” models [106]. Moreover, further investigations on

reconstructing the bowing point friction force [138], confirm the fact that friction does

not depend only on the relative bow string velocity. Measuring the force at the two

extremes of the string using force transducers, it is possible to reconstruct the force

at the bowing point and observe the same hysteresis loop obtained by using the two
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coated cylinders.

3.7.3 The bow hair compliance

Another element that seems to have a strong effect on the frictional interaction be-

tween a bow and a string is bow hair compliance.

The bow hair-compliance was investigated by Raman [90], who stated that, while

it is possible for a single point on the string to have absolutely the same velocity as

the bow in every part of its forward motion, kinematical theory shows that it is not

possible for every element on a finite region to have absolutely the same velocity as

the bow in every part of its forward motion.

The first line of evidence comes from analyzing experimental results presented

by Cremer [21] of the reflection and transmission behavior of transverse waves on a

string incident on a bow at rest. The second line of evidence comes from simulations

of the bowed string taking into account the finite width of the bow. The nature of the

“differential slipping” which may arise due to the kinematic incompatibility of uniform

bow velocity across the width of the bow and the string velocity in standard bowed

string motion (Helmholtz motion) is strongly dependent on bow hair compliance.

Simulations also demonstrate that suitable tilting of the bow can reduce the extent

to which “differential slipping” is detrimental to the establishment of the desired

string motion. The incompatibility of finite width and idealized Helmholtz motion is

shown in Fig. 3.14, borrowed from [70].

In position 1, the Helmholtz corner has just travelled past the bow from left to right.

While the entire section of the string under the bow sticks to the bow-hair, it is carried

forward parallel to its initial position, leading to position 2. The displacement of the

string force by the finite width of the bow is in disagreement with the ideal Helmholtz

motion, in which the shape of the string consists only of two straight lines.

As explained in [70], the the finite width of the bow creates a phenomenon called

differential slipping, in which the string occasionally slips at one side of the bow

continuing to stick at the other side.
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Figure 3.14: Incompatibility between the ideal Helmholtz motion and the finite width
of the bow, from [70].

Pitteroff [87] proposes an accurate yet efficient model of the bow hair compliance,

using a velocity dependent friction model.

A still unexplored result in bowed string synthesis is the combination of the plastic

friction model with accurate models of the bow hair compliance. Combining these

two refinements should provide a bowed string model that reproduces with a larger

accuracy the behavior of real instruments.

3.8 Modeling the body of the instrument

As mentioned before, an important element of a violin is its body, which filters vi-

brations that propagate from the string through the bridge. In real-time synthesis of

a violin, there is some difficulty in modeling the body because of a tradeoff between

accuracy and computational cost. If all the resonances of the body are accounted

for by modeling each one with its own pair of filter poles, the computational cost is

too high. On the other hand, one cannot implement too few filter poles and neglect

the large number of resonances, because the complex filtering of the body contributes

strongly to the characteristic timbre of the violin.
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3.8.1 Previous research on body models

Electronic simulation of body’s resonances

In [69] Mathews and Kohut proposed a technique to simulate electronically the body

resonances of a violin. The authors used twenty resonant circuits in parallel, tuned to

the main resonances of the violin body. Using this setup, they made some interesting

discoveries concerning the body of a violin:

• The peak frequencies must be irregularly spaced with respect to the harmonic

frequencies of any violin tone.

• The Q factors of the resonances must be sufficiently large so that the response

curve is steep almost everywhere.

• The peaks must be sufficiently closed together so the depth of the intervening

valleys does not exceed about 15 dB.

Mathews and Kohut claimed that a violin tone can be achieved with 20 or 30 reso-

nances distributed either randomly or exponentially over the frequency range 200-5000

Hz. Small damping gave unresponsive sound, while too high damping gave an hollow

and uneven tone, in which some pitches were stronger than others.

Commuted synthesis

An efficient implementation of the body in a synthesis model can be based on a

technique called commuted synthesis [122, 59]. In the commuted synthesis approach,

the body response is read from a wavetable and injected into a waveguide string as

the excitation source. Commuted waveguide synthesis is an efficient yet high quality

synthesis technique which avoids explicit modeling of the violin body. The idea behind

commuted synthesis is the following. In the real acoustic world, the string of a violin

couples via the bridge into a resonating body, which imposes a frequency response of

its own to the radiated sound. This situation is shown in Fig. 3.15, part a).

Since the string and the body constitute a linear system, they can be commuted as

shown in Fig. 3.15, part b). Moreover, the body and the excitation can be combined
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in a single excitation unit, for computational purposes. This means that the string is

fed with the traditional excitation combined with the impulse response representing

the body resonances.

There are various ways of combining the body excitation into the system. Morever

the low frequencies least damped modes can be factored out using, for example, second

order filters. This is useful to reduce the length of the excitation table and to achieve

interesting effects with the parametric modes [114].

EXCITATION STRING BODY

STRINGBODYEXCITATION

EXCITATION STRING

A)

B)

C)

Figure 3.15: The commuted synthesis approach. A) The excitation is fed through the
strings and then through the body. B) By using the linearity of the system, string and
body are commuted. C) The excitation and the body are combined together creating
the final excitation of the system.

The basic commuted synthesis solution is applicable only to linear, time-invariant

(LTI) systems, such as plucked and struck strings. In the case of a bowed violin, the

nonlinearity of the bow/string interaction does not allow this method to be used in

a precise way, although approximations are possible [52].

Since the computational power of computers in constantly strongly increasing, it

is possible to adopt other techniques which explicitly model the instruments’ body,

instead of sampling. In the following chapter different approaches to model a violin

body based on the waveguide mesh are proposed.



Chapter 4

Computational models for bowed

strings

In the previous chapter the acoustics of bowed string instruments was described, and

on overview of the bowed string models proposed in the literature was presented.

In this chapter an efficient yet accurate model of a bowed string is proposed.

Starting by discretizing the ideal wave equation, different solutions for solving the

interaction between a bow and a string are proposed. Sec. 4.1 describes the technique

adopted to design filters for different violin strings; Sec. 4.3 proposes a basic bowed

string physical model, Sec. 4.4 describes how to improve the model, Sec. 4.5 proposes

models to account for the finite width of the bow, and Sec. 4.6 describes how to model

the body of the instrument.

4.1 Measuring Decay Times in Pizzicato Record-

ings

As a first step, plucked violin strings were simulated. In an anechoic room, the four

violin strings were recorded while plucked at five different positions placed at equal

distance along the fingerboard. The energy decay relief (EDR) was calculated.

The EDR at time t and frequency ω is defined as the sum of all remaining energy

47
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at that frequency from time t to infinity. It is a frequency-dependent generalization

of Schroeder’s Energy Decay Curve [57].

More precisely, the EDR is given by

EDR(tn, fk) =
M
∑

m=n

|H(m, k)|2, (4.1)

where H(m, k) denotes bin k of the Short-Time Fourier Transform (STFT) at time-

frame m, and M denotes the total number of time frames. An example of EDR for

the violin D string (f0 = 196 Hz) is shown in Fig. 4.1, while the summed EDR,

obtained by summing power within bands, is shown in Fig. 4.2. The analysis was

performed using a FFT of 2048 points, with a Hanning window and no overlap. As a

comparison, Fig. 4.3 shows the EDR for a violin D string using the same parameters

as before, but damping the fingerboard side. Notice how the higher damping is clearly

visible in the resulting EDR. For each string, lowpass filters were estimated 1, which
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Figure 4.1: EDR for the violin D string, without finger for damping the fingerboard
side.

matched the corresponding EDR. A different starting point to estimate low-pass filters

1The estimation of the lowpass filter was performed using the Matlab function invfreqz.
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Figure 4.2: Summed EDR for the violin D string, without finger for damping the
fingerboard side.

which simulate losses is the assumption of constant-Q reflection functions at the two

extremities. This approach is described in Sec. 4.3.

4.2 Accounting for bending stiffness

. When an ideal string such as the one introduced in Eq. (3.4) is bowed, a sawtooth

waveform with a sharp corner is produced. This waveform is known as the ideal

Helmholtz motion. In reality, strings are not perfectly flexible, but they exhibit

a certain amount of stiffness. This is expressed by adding a fourth order term to

Eq. (3.4). Eq. (3.4), in fact, is a simplification of the following equation for a lossless

stiff string:

m
∂2y(x, t)

∂t2
− T ∂

2y(x, t)

x2
+B

∂4y(x, t)

x4
= 0 (4.2)

where B = (π/κL)2 is the bending stiffness, κ = (T/EI)1/2, E is the Young modulus,

I is the second moment of area. Partial solutions of this equation are plane waves of

the form:

y(x, t) = Aej(ωt+kx) (4.3)
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Figure 4.3: EDR for the violin D string, with a finger damping the fingerboard side.

in case the dispersion relation

ω = ctk
√

1 + (k/κ)2 (4.4)

is satisfied, where ω is the angular frequency. Since the string is attached at both ends,

k, the wave number, can take only the discrete values kn = nπ/L. The frequency of

the wave vibrations is therefore discretized as [32]

ωn = nωc

√
1 +Bn2 (4.5)

for n = 1, 2 . . ., where B = (π/κL)2 denotes the inharmonicity factor of the string

and ωc = πct/L is the fundamental frequency in case of no stiffness.

The relationship in Eq. (4.5) states that the modes of transversal vibration are not

in harmonic frequency ratio. An example of this situation is shown in Fig. 4.5. In it,
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Figure 4.4: Summed EDR for the violin D string, with finger damping the fingerboard
side.

the location of the partials of a cello D string with fundamental frequency f0 = 147

Hz and inharmonicity factor B = 0.0004 is compared to the location of the partials

of the same string with B = 0. Notice how, according to Eq. (4.5), the shift increases

at higher frequencies.

Designing allpass filters for dispersion simulation

In order to model dispersion a numerical filter made of a delay line qτ−τ0 , and a

n-order stable all-pass filter H(q) = q−nP (q−1)/P (q) is considered, where P (q) =

p0 + . . .+ pn−1q
n−1 + qn, and τ and n are appropriately chosen.

As proposed in [66], the goal is to minimize the∞-norm of a particular frequency

weighting of the error between the internal loop phase and its approximation by the

filter cascade:

δD = min
p1,...,pm

‖WD(Ω)[ϕd(Ω)− (ϕD(Ω) + τΩ)]‖∞

where ϕD(Ω) is the phase of H(ejΩ), and WD(Ω) is the frequency weighting. The
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Figure 4.5: Shift of partials for a stiff string (◦) with f0 = 147 Hz, B = 4e−4, versus a
non stiff string (B = 0) (x). Horizontal axis: partial number. Vertical axis: frequency
(Hz).

following weighting function is chosen:

WD =
1

∆φi

/

ωi (4.6)

where φi is the prescribed loop phase response at frequency ωi. Moreover, WD(Ω) is

zero outside the frequency range, i.e., [Ωc,ΩN ].

From an acoustical point of view, it is important to have a frequency weighting that

approximates the way the auditory system perceives the difference between original

and simulated phase dispersion.

Järveläinen et at. [56] conducted listening tests in order to find out the audibility

of inharmonicity in string instruments. The threshold of audibility of inharmonicity

was measured as a function of the inharmonicity coefficient B. Results showed that
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the detection of inharmonicity is strongly dependent on the fundamental frequency.

Fig. 4.6 shows the frequency error in cents for the cello D string (f0 = 147 Hz).

Inharmonicity was simulated by using three 4-th order allpass filters in cascade, at

a sampling rate Fs = 44100 Hz. Notice the small error of the approximation up to

about 5000 Hz.
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Figure 4.6: Result of the filter design example for a cello D string (f0 = 147 Hz),
Fs = 44100 Hz, using three 4-th order filters in cascade. Notice how the approximation
is precise up to 5000 Hz.

Fig. 4.7 shows the result of simulating the impulse response of a cello D string with

and without stiffness. Notice how the effect of stiffness is clearly visible. Fig. 4.8

shows mode number versus frequency over mode number for the first 25 partials of

a cello D string. The circles represent the ideal location of the partials; the plus

signes represent the location of the partials according to the technique suggested by

Woodhouse in [134], and the stars represent the location of the partials which results

by simulating dispersion using three 4-th order alpass filters in cascade, estimated
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Figure 4.7: Impulse response of a cello D string. Top: B = 0, bottom: B = 4e−4.
Notice how stiffness breaks the regularity of the impulse response.

using the technique described in Sec. 4.2. Notice how there is a good agreement

between ideal location and location obtained with the simulations. For each mode

number, the relative error (frequency/mode number) is only 1 Hz, which is not per-

ceivable. The computational cost of the technique described in this chapter is lower

that the cost of the technique described in [134], and therefore suitable for a real-time

implementation.

In this section a stiff cello D string has been simulated. In the following sections

different friction models are applied to the same string.

4.3 A basic bowed string physical model

In order to simulate the action of a bow rubbing a string, an hyperbolic model for

the coefficient of bow-string friction is chosen, given by

µ = µd +
(µs − µd)v0
v0 + v − vb

(4.7)
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Figure 4.8: Mode number versus frequency over mode number for the cello D string.
o= desired location of the partials, += location according to the technique described
in [134], *= location using the technique described in Sec. 4.2. Notice how there is a
good match between desired location and the two techniques.

where v, vb and v0 are the string velocity, bow velocity and initial bow velocity, respec-

tively, and µd and µs are the dynamic and static coefficients of friction, respectively.

For a bow interacting with a string, µd = 0.3 and µs = 0.8. Using such parameters,

the shape of µ is shown in Fig. 4.9. This model has been used for many years as

a convenient mathematical approximation which yields closed-form results for the

bow-string interaction [72, 71, 134]. The hyperbolic friction model is coupled to a

waveguide string model as described in Sec. 3.7 and represented in Fig. 4.10.

In it, vob and von represent the outgoing traveling waves from the bow point, prop-

agating toward the bridge and nut respectively. Traveling waves are filtered by the
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Figure 4.9: The hyperbolic friction model. Horizontal axis: relative bow-string veloc-
ity. Vertical axis: coefficient of friction.
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Figure 4.10: Block diagram of a basic bowed string physical model which uses an
hyperbolic friction model.
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Figure 4.11: Frequency response of the reflection filters at the bridge side for a cello D
string. Solid line: frequency response obtained using a 600 points FIR filter (Fs = 44.1
kHz), using the technique described in [134]. Dotted lines: frequency response of the
estimated second order low-pass IIR filters.

bridge and nut reflection filters, which lump losses along the string and at the two ex-

tremities. For computational efficiency, the reflection functions described in [134], are

represented by using second order low-pass filters, estimated using the invfreqz func-

tion provided by Matlab. More precisely, assuming an average Q factor for transversal

modes of 500, reflection FIR filters for the bridge and nut side can be calculated, using

the technique described in [134]. The frequency response of the reflection FIR filters

is calculated, and second order IIR filters which best approximate such frequency

response are calculated by using the invfreqz function provided by Matlab.

Fig. 4.11 shows the frequency response of the reflection filters at the bridge side

for a cello D string. The solid line represents the frequency response obtained using

an FIR filter with 600 coefficients at a sampling rate Fs = 44.1 kHz, calculated using

the technique described in [134]. The dotted line represents the frequency response

of the estimated second order low-pass filters. Notice how the low-pass filter provides

a good approximation of the FIR filter, and is at the same time efficient enough to

be used in a real-time implementation of a bowed string synthesizer.
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Figure 4.12: Frequency response of the reflection filters at the nut side for a cello D
string. Solid line: frequency response using the reflection filters described in [134],
dotted lines: frequency response of the estimated second order low-pass filters.

Fig. 4.12 shows the frequency response of the reflection filters at the nut side for

a cello D string. As in Fig. 4.11, the solid line represents the frequency response

obtained by using the FIR filters described in [134], while the dotted line represents

the estimated second order IIR filters. Notice how the second order IIR filter matches

closely the frequency response of the FIR filter.

4.4 Improving the model

4.4.1 Accounting for torsional waves

A first improvement in modeling the string resonator consists of accounting for tor-

sional waves. It is well known that string losses are required for stability of the

Helmholtz motion [34, 135, 100]. The transduction of transverse waves into (more

highly damped) torsional waves represents a significant loss on the string. The most

intuitive way to account for torsional waves is by adding an additional pair of delay
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Figure 4.13: Frequency response of the reflection filters at the fingerboard side for a
cello D string, torsional waves. Solid line: frequency response using the reflection
filters described in [134], dotted lines: frequency response of the second order low-pass
filters.

lines travelling in the same way as transversal waves but about 5.2 times faster. Re-

flection functions for torsional waves are calculated with the same technique used for

transversal waves. In this case, the average Q factor for torsional modes is 45 [137].

The frequency responses for the finger and bridge side of the reflection functions for

torsional waves are shown in Fig. 4.13 and Fig. 4.14 respectively. As before, the

FIR filters proposed in [134] have been approximated by using second order low-pass

IIR filters. Notice how, as it was the case for transversal waves, the approximation

provides satisfactory results.

The structure of the model that accounts for torsional waves is shown in Fig. 4.15.

Compared to Fig. 4.10, the model presents two additional pair of delay lines containing

torsional traveling waves toward the nut and the bridge. Transversal and torsional

waves are summed at the bow point where, as before, the coupling between the bow

and the string is solved.

It is also natural to ask whether the basic model might be improved by including

only the (real) losses corresponding to torsion-wave creation, since this costs little

or nothing extra in the simulation. In other words, the model generates torsion
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Figure 4.14: Frequency response of the reflection filters at the bridge side for a cello
D string, torsional waves. Solid line: frequency response using the reflection filters
described in [134], dotted lines: frequency response of the second order low-pass filters.

waves realistically, but they are treated as if they are fully absorbed by the string

terminations. This simplified torsion-wave simulation was suggested as a possibility

in [21], implemented in [71] and investigated in [106].

4.4.2 Accounting for string stiffness

As a further improvement, allpass filters were added, which accounted for the string

bending stiffness, as described in the previous section. The bowed string physical

model that accounts for string stiffness is represented in Fig. 4.16. The three allpass

filters in cascade are added to the trasversal waves in the delay lines on the nut side.

This model is able to simulate the rounding off of the idealized waveform by

introducing more dissipative terms and dispersive terms. Fig. 4.17 and Fig. 4.18

illustrate this situation. Fig. 4.17 displays the time domain waveform of a bowed cello

D string without bending stiffness, bowed with a constant bow velocity vb = 0.05 m/s,

bow force fb = 0.3162 N and normalized bow position β = 0.07. The waveforms were
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Figure 4.15: Structure of a bowed string model that accounts for torsional waves.

captured at the bow point (top) and at the bridge point (bottom) after steady state

motion was achieved. Notice the regularity of the Helmholtz motion. Fig. 4.18 shows

the time domain waveforms of a string with bending stiffness B = 4e−4, bowed with

the same parameters as the string captured in Fig. 4.17. Notice how the Helmholtz

motion is not as precisely defined as before. This difference is also perceivable while

listening to the two waveforms, especially in the attack portion, which is shown in

Fig. 4.19. The attack in the stiff string results in a noisier and longer, which is

noticeable also visually. From a perceptual point of view, however, the noisier attack

makes the resulting synthetic string less artificial and more realistic.
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Figure 4.16: Block diagram of a digital waveguide model of a bowed string including
allpass filters for stiffness simulation.

4.4.3 Improving the friction model

A further improvement consists of refining the friction model. Smith and Woodhouse

[112] noticed that at the bow point an hysteresis loop in the velocity versus friction

plot is noticeable. This loop is not taken into account by the velocity dependent

friction models. They assumed that friction depends also on the temperature of the

contact point.

They therefore proposed a plastic friction model given by:

µ =
Aky(T )

N
sgn(v) (4.8)

where A is the contact area between the bow and the string, N is the normal load,
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Figure 4.17: Time domain waveforms of the basic bowed string physical model that
does not account for stiffness and torsional waves. Top: string velocity at the bow
point, bottom: string velocity at the bridge.

and ky(T ) is the shear yield stress as a function of temperature T . The temperature

T of the shearing rosin layer can be estimated from the current sliding velocity v by

passing it through an appropriate linear filter [112]. Here, the rosin is modeled as

exhibiting “plastic” deformations at the bow-string contact. Such thermal friction

model is calibrated so that under steady sliding conditions it matches the double

exponential friction model. Since there is a time delay associated with heat flow, the

plastic model exhibits hysteresis, unlike the other two friction models.

An example of the behavior of the plastic model is shown in Fig. 4.20. The

simulations were obtained using the same cello D string as before, bowed at bow

velocity vb = 0.05 m/s and bow force fb = 0.2 N. The top of Fig. 4.20 shows the

time domain waveform at the bow point, after steady-state is achieved. The bottom

shows the friction versus velocity plot. Notice the hysteresis loop. This loop does not
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Figure 4.18: Time domain waveforms of the basic physical model that accounts for
stiffness. Top: string velocity at the bow point, bottom: string velocity at the bridge.

correspond to the classic velocity dependent friction curve, represented in the figure

by the double-exponential friction model described in Chapter 2. In Chapter 6 it

is show how the plastic model improves the playability of the bowed string physical

model.

4.4.4 The elasto-plastic model

In Chapter 2 the elasto-plastic friction model was introduced as one of the latest

developments of dynamic friction models, in which the dependence of friction on the

relative velocity between two objects in contact is expressed through a differential

equation. In this section the elasto-plastic model is applied to the simulation of a

bowed string, and compared to the plastic model. For steady-state, the friction curves
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Figure 4.19: Transient behavior of the basic physical model. The string is started from
rest and excited with a constant bow velocity vb = 0.05 m/s, bow force fb = 0.3162
N and at a normalized bow position β = 0.07. Top: model with no stiffness, bottom:
model with stiffness.

represented in Fig. 4.21 are considered. More precisely, Fig. 4.21 shows the steady-

state friction function used in [24] (solid line) and the double exponential steady-state

function of Smith and Woodhouse [112].

The same waveguide resonator as before is coupled to the elasto-plastic model.

Using the elasto-plastic model as the coupling mechanism between the bow and the

string, the resulting system of equations for the bow becomes































ẍ
(b)
i + g

(b)
i ẋ

(b)
i +

[

ω
(b)
i

]2

x
(b)
i =

1

m
(b)
il

(f (b)
e + f) , (i = 1 . . . N (b))

ż(v, z) = v

[

1− α(z, v)
z

zss(v)

]

f = σ0z + σ1ż + σ2v + σ3w (friction force)

, (4.9)
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Figure 4.20: Simulations using the plastic model. Top: string velocity at the bow
point. Bottom: friction versus velocity. Notice how the plastic model produces an
hysteresis loop which does not follow the traditional velocity-dependent friction model
(represented in the figure by the decaying exponential in the bottom part).

where for clarity the superscript (b) stands for “bow”. The x variables represent the

modal displacements for the bow, while z is the mean bristle displacement. The terms

f
(b)
e represents external forces, while the integers N (b) are the number of modes for

the bow.

This system of equations is discretized by using the bilinear transform. Details

about the discretization are described in Appendix B.

Notice how a delay-free loop appears when coupling the excitation to the resonator.

This is solved by using the K-method [10], as described in Appendix B. The current ż

value is computed with the Newton-Raphson algorithm. Experimentally, a maximum

of seven iterations is enough to achieve convergence; this allows an efficient real-time

implementation.
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Figure 4.21: Dotted line: double exponential friction model. Solid line: friction model
of Eq. 2.14.

About the control parameters

Since the main interest of this study is the generation of computer models which

provide real-time virtual instruments with interesting musical possibilities, motivated

in a general way by physical models, there is a need to describe how the physical

parameters of the model have been related to high-level control parameters.

The first step consists on mapping two high-level control parameters commonly used

in physical models of bowed strings, i.e., the steady-state bow velocity vb and the

normal force fb.

The physical parameter space of the elasto-plastic model is given by the set

(fc, fs, vs, σ0, σ1, σ2, zba).
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Figure 4.22: Top: velocity at the bow point for the elasto-plastic model with friction
model parameters σ0 = 4000, σ1 = 0 and σ2 = 0.25. Bottom: velocity versus friction.
Notice the hysteresis loop similar to the one obtained by using the plastic model.

First of all, notice how in the model it is possible to set an external force fbe on

the bow, but it not know a priori what the resulting bow velocity vb will be. However,

the two quantities can be easily related. At steady state, (i.e., ż = 0) the equality

v

(

1− α(v, z)
z

zss(v)

)

= 0 (4.10)

must hold. This means that either v = 0 (i.e., the external force is too weak and the

bow has stopped on the string), or v = vb 6= 0 and z = zss(vb) (i.e., the external force

is strong enough to reach a steady-state velocity). In this latter case the total force

acting on the bow is zero, i.e., fbe = ffr(vb, zss(vb)).
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Therefore choosing the value

fbe = ffr(vb, zss(vb)) = σ0zss(vb) + σ2vb (4.11)

can give two different outputs, depending on the values of the other parameters:

either the bow stops after a short transient, or it reaches the desired bow velocity vb.

Concerning the physical parameters of the friction force, the two parameters

(fc, fs) are related to fb through the static and dynamic friction coefficients:

fs = µsFb, fc = µdFb. (4.12)

The breakaway displacement zba is also influenced by the normal force: note that

in order for α(v, z) to be well defined, the inequality zba < zss(v)∀v must hold (this

remark is made also in [26]). Since minv zss(v) = fc/σ0, a suitable choice for zba is

zba = cfc/σ0 = cµdFb/σ0, with c < 1, (4.13)

which states that the breakaway displacement increases with the normal force, as one

would expect.

The bristle stiffness σ0 is an interesting parameter. One would say that an increase

in σ0 results in an increase in the friction force: this is not true. Indeed, looking at

the steady-state (i.e., v = vb, z = zss(vss), and ż = 0) force, this does not depend

upon σ0:

ffr (vb, zss(vb)) = σ0zss(vb) + σ2vb = fc + (fs − fc)e
−(vb/vs)2 + σ2vb, (4.14)

which is of course the usual friction force used in static models. Therefore, σ0 does not

control the strength of the steady-state friction force, instead it defines the “degree

of dynamicity” of the dynamic model; very roughly, if σ0 → ∞ the bristles do not

move anymore. In other words, σ0 defines the magnitude of the allowed presliding

displacement.
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Finally, the two parameters (vs, σ2) are easily deduced from the literature. The

last one, σ1, is less easily determined (it describes the internal dissipation of vibrating

bristles). Canudas De Wit et al. [24] use the value σ1 =
√
σ0. Fig. 4.22 shows

the result of applying the elasto-plastic model to a waveguide string with the same

parameters as before. The friction model parameters used are σ0 = 4000, σ1 = 0 and

σ2 = 0.25. Notice how an hysteretic effect similar to the one produced by the plastic

model is obtained with the elasto-plastic model. Moreover, notice how a realistic

stick phase with ripples is obtained. The bristle internal dissipation affects micro-

oscillations and is perceptually relevant. Fig. 4.23 shows the attack portion of the

bridge force generated by the elasto-plastic model, with the same combinations of

parameters as before. Notice how, as desirable, Helmholtz motion is achieved after

the first period.

Fig. 4.24 shows the results of the simulations using the elasto-plastic model with

σ2 = 0.43. Notice how increasing the value of σ2 makes the Helmholtz corner less

sharp. This has a strong perceivable effect.

4.5 Accounting for the bow width

The previous bowed string models assume that the bow excites the string at a single

point. This is a simplified assumption of reality. As a matter of fact, every bowed

string player is aware that the sound quality may vary by varying the amount of

bow-hair in contact with the string, which is achieved by tilting the bow.

In Chapter 3 the concept of differential slipping was introduced, and it was ex-

plained how differential slipping cannot be achieved using a model that excites the

string at a single point. In this section two solutions are proposed to account for

the width of the bow. The first solution consists of implementing the two-point bow-

string interaction model proposed by McIntyre, Schumacher and Woodhouse in [70].

The second solution is a refined bow-width model as proposed by Pitteroff in [86],

combined with the efficient waveguide implementation for the freely vibrating string.
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Figure 4.23: Attack transient of the elasto-plastic model, with the same parameters as
Fig. 4.22. The y axis represents the bridge force. Notice how the Helmholtz motion
is achieved after the first period.

4.5.1 A two-point bow string interaction model

Since the transitions from stick to slip are not instantaneous, different regions across

the bow may have different release and capture events, and a situation called “differential-

slipping events” described in [70] can occur. In differential slipping, the bow hair near

the bridge may slip backward relative to the bow motion, while bow hair on the nut

side may slip forward. This process can be understood as the string “straightening

out” under the bow as the bowing point moves uniformly from one extreme (capture)

to the other (release).

Helmholtz motion is generally not disrupted by differential slipping due in part

to the damping provided by torsional string motion and the finite compliance of the

bow-hair. Differential slipping can create audible events, especially when bowing

closer to the bridge.
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Figure 4.24: Simulation using the elasto-plastic model with σ2 = 0.43. The top portion
represents the string velocity at the bow point. Notice how the sharp squarewave typical
of the Helmholtz motion presents a completely different shape.

.
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To account for differential slips, a two-point model that allows to simulate effi-

ciently the finite width of the bow was proposed in [105]. As shown in Fig. 4.25, the

bow is in contact with the string in two points called vhl and vhr. The contact point

vhl on the left side of the bow is obtained summing the contribution coming from the

left side of the bow, plus a filtered version of the wave coming from the right side,

which is attenuated by the bow air. The same is true for the contact point on the

right side, denoted by vhr, so it is possible to write:

{

vhl = vin ∗ hr + vib vhr = vin + vib ∗ hl (4.15)

where hr and hl are two filters that model the right and left side attenuation respec-

tively.

So two bow-string interactions have to be solved, one for each side of the bow,

which give two friction values as:

{

fl = 2 Z (vl − vhl) (4.17a)

fl = µ (vl − vb) (4.17b)
(4.17)

and
{

fr = 2 Z (vr − vhr) (4.19a)

fr = µ (vr − vb) (4.19b)
(4.19)

where fl and fr represent the values of the friction calculated at the left and the right

side of the bow respectively, and vl and vr represent the velocity at the left and right

contact point respectively.

This allows to calculate the new outgoing velocities as follows:

{

von
= vib + fr

2Z
(4.20a)

vob
= vin + fl

2Z
(4.20b)

(4.20)
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von vob

vib
vin

vhl=vin*h+vib

fl=µ(vl-vb)

2Z(vl-vhl){fl=

vob=vin+fl/(2Z)

fr=µ(vr-vb)

2Z(vr-vhr){fr=

von=vib+fr/(2Z)

vhr=vin+vib*h

Figure 4.25: Structure of the two point bow-string interaction model

The bow hair

The ribbon of bow-hair on a violin bow consists of approximately 200 hairs, of which

normally 50 or so are in immediate contact with the string [87]. Since the distance

between the hair is smaller than the wavelength, the bow hair can be approximated

as an uniform material.

Conversion of physical parameters to samples

Since the diameter of an individual bow hair is about 0.2 mm, and no more than 50

hairs are in contact with the string, the resulting bow width is about 1 cm. This

means that at an audio rate of 44100 Hz the number of samples corresponding to the

bow width is given by (44100/f0) ∗ δ/l, where δ represents the width of the bow, l is

the length of the string (0.69 m) and f0 is the fundamental frequency of the string.

For example, in the case of a violin G string, f0 = 196 Hz, which gives a bow of three

samples in contact with the string. On the other end, a violin E string (f0 = 659 Hz)

gives less than one sample of contact area. To cope with this problem, a multirate

model is used.

Using digital fractional delays [127, 65] both a fine tuning of the sampling instants

and an efficient implementation of sample rate conversion are possible. The output

samples are computed with different delay values, according to the corresponding

string that is played. For example, the standard audio rate of 44.1 kHz is associated

to the G string, which, as explained before, gives 3.26 samples of full contact. Having
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the same number of samples for the highest violin string (i.e., the E string, at 659

Hz), would require a sample rate of about 140kHz, which is way above the usual audio

standards. On the other hand, imposing a sample rate of about 48 kHz would result

in a single sample of bow hair contact, which reduces the two point model to the

single point model. Our compromise consists of choosing a sample rate of 82 kHz for

the E string, which gives about 1.8 samples of full contact, and allows to excite also

the higher harmonics of the string to obtain brighter sonorities without encountering

aliasing.

Simulation results

Fig. 4.27 shows the waveforms captured by the different models after reaching steady

state, about 4000 samples from the attack, when the Helmholtz motion is established.

These simulations show a cello G string bowed with a constant bow force of 0.2 N and

a constant bow velocity of 0.05 m/s. The bow was placed at a normalized distance

from the bridge of 0.1. The top figure represent the waveforms created by the basic

model described at the beginning of this chapter. The second figure from the top

represents the basic model with torsional waves. The third figure is the model with

torsional waves and allpass filters to account for inharmonicity. Finally, the bottom

figure represents the model with the same features as the previous one, but with the

bow width model included. Notice how the Helmholtz waveform is somehow more

“noisy” than in the previous examples. These perturbations result in audible noise,

qualitatively similar to that in real bowed string instruments. Fig. 4.26 shows how

the noise-generated spikes in the waveform are even more evident when bowing closer

to the bridge. Maintaining the same parameters as in Fig. 4.27, the bow is moved to

a normalized distance of 0.07.

Tilting the bow

Having a bow of finite width allows to reproduce the movement of the player while

tilting his bow simply by changing the number of “bow samples” in contact with

the string. Moreover, it is possible to simulate bows whose width is larger than that
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Figure 4.26: Motion of a bowed string with the bow excited at normalized bow position
of 0.07. Top: basic model, bottom: model that accounts for the bow width.

of a real instrument, simply by increasing the amount of samples that represent the

contact area.

4.5.2 A refined physical model for the bow hair

Pitteroff [86] proposes an accurate model of a bowed string which takes into account

the bow width. The five equations governing the behavior of the bow under the string

are given by:

T
∂2η

∂x2
+ f = m

∂2η

∂t2

K
∂2χ

∂x2
− af = Θ

∂2χ

∂t2

f = −sηH − d
∂ηH

∂t

vrel =
∂η

∂t
− a∂χ

∂t
− ∂ηH

∂t
− vb

vrel = 0
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Figure 4.27: Motion of a bowed string obtained using different models. From top
to bottom: basic model, basic model with torsional waves, basic model with torsional
waves and string stiffness, model with torsional waves, string stiffness and bow width.

(stick)

f(vrel) = ±
[

µd +
(µs − µd)(vb − vmid)

vb − vmid ∓ vrel

]

fz (4.21)

(slip)

where η is the string displacement, χ is the angular displacement, a denotes the

radius of the string, ηH denotes the displacement of the bow hair in contact with the

string.

For computational efficiency, the system of Eq. (4.21) is solved in two different

ways: the portion of the freely vibrating string is solved as before using digital waveg-

uides. For the portion of the string under the bow, finite differences are used.
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A multirate implementation

The numerical schemes required for the portion of the string under the bow require

a sampling rate too high for real-time and audio simulations. It was noticed, in fact,

that at a sampling rate of less that about 200000 samples, depending on the funda-

mental frequency, the model becomes unstable. For this reason, a higher sampling

rate for the samples of the string under the bow was used, while for the samples of

the freely vibrating string the sampling rate of 44.1 kHz was adopted. The sampling

rate conversion is performed by linear interpolation. Fig. 4.28 shows the schematic

representation of the resulting model, with the two blocks for sampling rate conver-

sion.

String
Bow

String
Bridge

Bow velocity (m/s)
Bow force (N)

Bow position (normalized)

Nut

Bow width (samples)

SR

String StringSR

SR

SR

Figure 4.28: Structure of the multirate bowed string physical model. The bow-string
interaction portion of the model is downsampled by a factor of 10.

4.6 Modeling the body of a violin

In real-time synthesis of a violin, there is some difficulty in modeling the body because

of a tradeoff between accuracy and computational cost. If all the resonances of the

body are accounted for, by modeling each one with its own pair of filter poles, the

computational cost is too high. On the other hand, one cannot implement too few
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filter poles and neglect the large number of resonances, because the complex filtering

of the body contributes strongly to the characteristic timbre of the violin.

In order to solve the problem of computational cost and maintain an efficient

implementation that runs in real-time, Karjalainen and Smith proposed a technique

called commuted synthesis [58]. The idea behind commuted synthesis, as discussed

in Chapter 3, is to combine the body resonances with the excitation mechanism.

In this section new approaches to model the body of a violin are proposed, mo-

tivated by the desire to combine an efficient real-time implementation together with

a physical interpretation of the model. The high frequency resonances of the body

of a violin are first simulated by using a 3D waveguide mesh [27]. Secondly, resonant

filters which simulate the low frequencies resonances are added. As an alternative

solution, a simulation of a trapezoidal violin is proposed.

4.6.1 The digital waveguide mesh

The digital waveguide mesh was introduced by Van Duyne and Smith [27] as an

extension of the 1-D digital waveguide. The waveguide mesh is a regular array of

1-D digital waveguides arranged along each perpendicular dimension, interconnected

at their crossings by scattering junctions. Examples of mesh topologies are shown

in Fig. 4.29. In the canonical case, the scattering junctions are taken to be equal

Figure 4.29: Two examples of mesh topologies: a 2D mesh (left side), and a 3D mesh
(right side).

impedance lossless junctions and the interconnecting waveguides are of unit length.

Fig. 4.30 shows a 2-D digital waveguide mesh as originally proposed in [128]. Two
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conditions must be satisfied for at a lossless junction J connecting lines of equal

impedance [27]:

• Sum of inputs equals the sum of outputs (flows add to zero).

• Signals at each intersecting waveguide are equal at the junction.

The first condition translates to the following equation:

∑

i

v+
il,m(n) =

∑

i

v−il,m(n) (4.22)

where the l,m indices represent the spatial position of the junction in the mesh, the

n index represents the current time sample, and v+
il,m(n) and v−il,m(n) represent the

four incoming and outgoing waves at a junction, respectively. The digital waveguide

mesh algorithm can be interpreted as a difference scheme for computation of the

two-dimensional wave equation [128].

4.6.2 Body modeling using the waveguide mesh

As a first attempt, the high frequency resonances of a violin body were simulated by

using a 3D waveguide mesh. The 3D rectilinear mesh is an extension of the 2D mesh

to 3 dimensions. It is made of 6-port scattering junctions arranged at integer valued

spatial positions in each of the three axial directions.

The 3D waveguide mesh is initially chosen to correspond to a physical box with

dimensions 35.5× 21.0× 3.0 cm. Such dimensions are comparable to those of a real

violin body, so it is expected for the mesh to spontaneously have a similar mode

spacing at high frequencies where the air modes dominate [21]. At a sampling rate

of 44.1 kHz, assuming a sound speed c = 344 m/s, these dimensions translate to a

rectangular mesh which is approximately 26× 16× 2 samples along each edge. 2

2Using von Neumann stability analysis [27], a physical length d is converted to samples using the
formula Nd = dFs/(c

√
3).
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Figure 4.30: A 2-D digital waveguide mesh. The scattering junctions J are taken to
be equal impedance lossless junctions.

Designing boundary filters for the mesh

Most of the surfaces found in everyday listening exhibit a low-pass behavior, since they

absorb higher frequencies more rapidly [64]. In order to approximate such a spectral

characteristic for the body of the violin, a first order spring-damper system was used,

as proposed in [33] and shown in Fig. 4.31. Let us consider an unitary reflective

surface, v(t) = kmxm(t) + Rsẋm(t), where km and Rs are the spring constant and

damping coefficient respectively. After deriving with respect to time and performing

a Laplace transform, the transfer characteristic of the system becomes:

V (s)

Vm(s)
=
km

s
+Rs (4.23)
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Figure 4.31: 1-st order spring/damper system.

Since v = vi + vo, and vm = v+
m + v−m, it is possible to write

Vo(s)

Vi(s)
=
km/s+Rs − Z0

km/s+Rs + Z0
(4.24)

By using the bilinear transformation [82], the Laplace variable can be rewritten ac-

cording to the following map

s← h
1− z−1

1 + z−1
(4.25)

where h is usually set to 2Fs. Therefore the transfer function of Eq. (4.24) can be set

to:

Vo(s)

Vi(s)
=

km−h(Z0−Rs)
km+h(Z0+Rs)

+ km+h(Z0−Rs)
km+h(Z0+Rs)

z−1

1 + km−h(Z0+Rs)
km+h(Z0+Rs)

z−1
. (4.26)

This formula gives the coefficients that a 1-st order filter must have to reproduce the

damper/spring system. In our example, from [64] it is assumed Z0 = 414, km = 30

and Rs = 69. The corresponding amplitude of the frequency response is shown in

Fig. 4.32.

The frequency response of the 3D mesh, with the low-pass filters described above,

is shown in Fig. 4.33. The mesh was excited with an unitary impulse at position

(3, 8, 2), which roughly corresponds to the bridge position, for a mesh of dimensions

(26, 16, 2). The output sound was captured at the same position.

As it can be seen from Fig. 4.33, the 3D mesh alone is not able to provide the

right low-frequency resonances required to properly simulate the body of a violin.

For this reason, the complete body model was enhanced by adding a combination



4.6. MODELING THE BODY OF A VIOLIN 83

0 0.5 1 1.5 2 2.5

x 10
5

0.7

0.75

0.8

0.85

0.9

0.95

1

Frequency (Hz)

A
m

pl
itu

de

Figure 4.32: Frequency response for the wall filters for the 2D waveguide mesh, as-
suming the absorption coefficients from [64].

of second order resonant filters for low-frequencies and the same waveguide mesh for

high frequencies.

The low frequency-resonances were extracted by analyzing the input admittance

of an amateur made instrument, as shown in Fig.4.34.3

The mode extraction from the violin body response was realized using the notch

filter of the form [58]

Hr(z) =
A(z)

A(z/r)
=

1 + a1z
−1 + a2z

−2

1 + a1cz−1 + a2
2z

−2
(4.27)

where a1 = −2r cos(ω0), a2 = r2, where r is the pole radius and ω0 is the center

frequency in radians, and c is a coefficient used to flatten the magnitude response of

the notch filter far away from the notch frequency.

Fig. 4.34 shows the frequency response at low frequency for the target violin,

together with the location of the main low frequencies resonances. Table 4.1 reports

3The input admittance is courtesy of Jim Woodhouse.
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Figure 4.33: Top: impulse response, bottom: frequency response for the 3D waveguide
mesh of dimensions (47, 28, 8), Fs = 44100 Hz, using the wall filters of Fig. 4.32.

center frequency, Q factors and amplitude of the resonances shown in Fig. 4.34.

Fig. 4.35 shows the result of the mode extraction for the first three modes of

the frequency response, Fig. 4.35 part A) shows the original frequency response.

Fig. 4.35 part B) shows the frequency response after the first resonance is removed.

Fig. 4.35 part C) and D) shows the frequency response after the second (part C) and

third (part D) resonances are removed. Notice how the mode extraction algorithm

correctly removes the targeted resonances.

The residual impulse and frequency response, containing the high frequency reso-

nances, is shown in Fig. 4.36. Such residual is the target which needs to be compared

to the designed mesh.

Due to psychoacoustic properties of hearing, instead of considering individual

high-frequency modes, it is possible to consider bands of high-frequency modes. A

reasonable choice is to group high frequency modes into critical bands of hearing

according to the Bark [142] or ERB [74] frequency scales. Matlab software for this

purpose may be found via [53].
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Figure 4.34: Location of the low frequency resonances of the input admittance of an
amateur violin.

To match the mode bandwidths, the high frequencies violin body impulse response

was analyzed over a Bark frequency axis to determine the average decay time for each

“band of modes” in the high-frequency response.

Within each band, certain statistics of the mesh response need to be matched

to those of the instrument body response. The within-band amplitude distribution

was taken to be the natural amplitude fluctuation obtained when summing a set of

identical modes at center frequencies chosen randomly according to the appropriate

distribution. The EDR (see Sec. 4.1) was used, preferred over the more usual short-

time Fourier power spectrum because it de-emphasizes beating decay envelopes due

to closely tuned coupled modes (which occur often in acoustic measurements of res-

onating bodies). This facilitates estimating decay times for ensembles of resonators

which are being characterized statistically.

The result of summing EDR in each critical band can be seen in Fig. 4.37 for the

original violin response after the high frequencies have been removed, and Fig. 4.38

for the synthesized mesh response. A line is fitted to the successive values for each
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Center frequency (Hz) Q factor Amplitude (dB)

118 18 -33
274 22 -34.5
449 10 -16
547 16 -15.5
840 50 -31
997 30 -20.4
1100 30 -34
1290 25 -29
1500 50 -28
1675 60 -22
1900 60 -20

Table 4.1: Low-frequency resonances detected for the violin whose input admittance
shown in Fig. 4.34. Resonances are shown up to 2000 Hz.

band to estimate the average decay and initial amplitude levels for the modes in the

band.4 Notice how the average decay time between the two responses is quite similar.

Determination of crossover frequency

Simulations were carried out to determine the crossover frequency at which the syn-

thesis model becomes perceptually equivalent to the original body impulse response.

The crossover frequency is designed as the upper limit of resonant modes modeled us-

ing biquads and the lower limit at which the mesh output models the high frequency

modes.

To construct the most accurate mesh impulse response with regard to the features

extracted from the violin impulse response data, the average decay rate of the original

impulse response was first analyzed. These data were then fit to the waveguide mesh

impulse response.

To determine the lowest crossover frequency a lowpassed violin impulse response

and a highpassed synthesized mesh impulse response were mixed, and the resulting

sound was compared to the original violin impulse response.

4In the analysis, a length 30 ms Hanning window was used with 50% overlap. This maximized
frequency resolution while leaving sufficiently many analysis time frames at high frequencies.
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Figure 4.35: Result of mode extraction of the first three modes of the target frequency
response. A) the original frequency response, B) the frequency response after the first
mode is removed, C) the frequency response after the second mode is removed, D) the
frequency response after the third mode is removed.

Tests performed show that the lowest crossover frequency at which the highpassed

mesh/lowpassed violin impulse mixture is indistinguishable from the violin body im-

pulse reference is around 1900 Hz. At this level, the number of biquad resonators

needed to capture the low frequency modes is about 10. This is more computation-

ally efficient than the crossover frequency used in the [47], which used 13 biquad res-

onators which went up to a crossover frequency of 3200 Hz. At a crossover frequency

that was lower than the threshold, there was an audible difference in the timbre of

the test signal, which could not adequately match the violin impulse response in a

perceptually equivalent way.
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Figure 4.36: Top: impulse response, bottom: input admittance at the bridge for the
original violin, after the low frequency resonances have been removed.

These tests show that it is perceptually possible to use a reduced number of low-

frequency resonators and still provide high quality results. Connecting the mesh to

these resonators produces a high quality synthetic violin impulse response. The cor-

responding time domain signal is shown along with that of the original violin impulse

response in Fig. 4.39. The more pronounced beating of the highpassed waveguide

mesh output is effectively masked by the strong, long-ringing body modes present in

the original violin body impulse below 1900 Hz.

Examining smaller mesh dimensions

Since perceptual mode saturation in a critical band can be realistically achieved by a

small number of resonators, it is theoretically possible that even smaller dimensions

of waveguide meshes would have a distribution of mode amplitudes which can satisfy

the perceptual criteria for our synthesis model described above. This would allow

to build a mesh which is perceptually equivalent but whose computational cost is

reduced.
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Figure 4.37: Summed EDR for the original violin response, after low frequency reso-
nances have been removed.

Dimensional reductions of the 3D mesh at 44.1 kHz were also tested in the same

way to determine their lowest crossover frequency, if any. At a lower sampling rate

of 22.05 kHz, the desired physical dimensions translate to the 3D-mesh dimensions

13× 8× 1 samples. With only 1 sample in the z direction, a 2D mesh at 22.05 kHz

is expected to behave similarly to its 3D counterpart, at 16× 9 samples. (For the 2D

mesh the correction factor is
√

2, as opposed to
√

3 as it was the case in the 3D mesh.

Simulation results show that this mesh has about the same crossover frequency as

the 3D, 44.1 kHz mesh, at around 1900 Hz.

Using geometries which do not closely follow the physical proportions of the violin

edges may result in mode distributions which are less suited for simulating high-

frequency violin body resonances. For example, an 18 × 13 × 2 sample 3D mesh at

44.1 kHz has its lowest crossover frequency around 2000 Hz.
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Figure 4.38: Summed EDR for the synthesized mesh impulse response.

Simulation results

The bridge velocity calculated by the bowed string model was fed to the resonant

filters and waveguide mesh in parallel, and their outputs were added, as shown in

Fig. 4.41. This is the implementation reported in [47] and [46].

Fig. 4.42 shows the results of the simulations for a violin E string (f0 = 659 Hz).

The top picture displays the waveforms observed at different time intervals of the

outgoing velocity at the bridge point, i.e., the waveforms that are entering the mesh

and the resonators.

The center of Fig. 4.42 displays the outputs of the resonant filters and the mesh

respectively, while the bottom of Fig. 4.42 displays the combination of the mesh with

the resonant filters.

The influence of the body model on the spectrum of the bowed string is shown

in Fig. 4.43. It is noticeable how the dimensions of the mesh produce a frequency

response that has a gap below 2000 Hz and above 8000 Hz. This hole is related to

the fact that the mesh models the high frequency air modes of the cavity.
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Figure 4.39: Time responses of the violin body impulse response (top) and synthesized
waveguide mesh impulse response (bottom) above 1900 Hz.

4.6.3 Savart’s trapezoidal violin

As an attempt to obtain both a body model based on waveguide meshes and a physical

interpretation, the trapezoidal violin designed by Savart in the 18th century was

modeled. Savart’s trapezoidal violin was briefly described in Chapter 3.

To simulate such instrument, a mesh whose dimensions correspond to the ones

proposed by Savart for his trapezoidal violin was chosen. In this way the mesh design

was motivated and justified by historical reasons.

As shown in Fig. 4.44, the dimensions of the original violin were 600 mm of total

length, 353 mm of body length, 225 mm of body width in the lower part and 85 mm

of body width for the higher part of the body. This corresponds to a 3D mesh of

dimensions 27× 17× 3 for the bottom part. The violin had two rectangular holes in
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Figure 4.40: Frequency responses of the original violin impulse response (top) and a
highpassed synthesized waveguide mesh impulse response plus a lowpassed violin body
impulse response (bottom). The straight vertical line at 1900 Hz shows the crossover
frequency.

each side, which correspond to the f-holes in the traditionally shaped violin.

4.6.4 Modeling Savart’s trapezoidal violin

In order to create a digital model of Savart’s violin a three dimensional trapezoidal

waveguide mesh was chosen.

The trapezoidal mesh is an extension of the original two dimensional rectangular

mesh [27] in which the horizontal dimension decreases in size from bottom to top,

according to the design proposed by Savart.

The dimensions of the mesh were chosen in order to match the dimensions of
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Figure 4.41: Bowed string physical model block diagram. The outgoing velocity at
the bridge is filtered in parallel through the waveguide mesh and the low-frequency
resonant filters.

Savart’s violin. More precisely, the mesh had dimensions 27× 13× 3 samples for the

bottom part, and 7× 13× 3 for the upper part.

Fig. 4.45 shows the trapezoidal mesh used to simulate Savart’s violin. A model of

the two violin’s holes was also added. Such holes were added to the trapezoidal mesh

using the same technique adopted to model toneholes in woodwind instruments [97].

Fig. 4.46 shows the impulse response (top) and frequency response (bottom) of

the trapezoidal mesh. The response was obtained by exciting the mesh at position

4 × 1 and capturing the output waveform at 4 × 2. Notice the nice distribution of

peaks and valleys at low frequency, which resembles to the distribution typical of a

violin.

Application to the bowed string physical model

The violin body model was applied to the digital waveguide string model. The input

parameters of the string model were fb = 0.31 N, vb = 0.05 m/s and β = 0.075. As

in the case with the 3D mesh, a violin E string (f0 = 659 Hz) was used.

The outgoing velocity at the bridge point vob was filtered through the resonances

of the trapezoidal mesh, as shown in Fig. 4.47.

Fig. 4.48 shows the result of applying the trapezoidal mesh to the bowed string

physical model. The top of Fig. 4.48 represents the outgoing velocity at the bridge

vob before being filtered through the body resonances, while the bottom of Fig. 4.48

shows the output of the bowed string physical model after being filtered through

the body resonances. The waveforms were captured after steady state motion was
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Figure 4.42: Waveforms of the velocity captured at different locations of the model.
From the top: outgoing string velocity at the bridge point, velocity output of the res-
onant filters, velocity output of the mesh and total final velocity.

achieved.

As expected, the regularity of the Helmholtz motion is broken when the waves

are filtered through the body. This is the same behavior that can be observed when

examining the bridge waveform, with and without the role of the body. This difference

can be noticed also in the spectrum of the resulting waveforms, shown in Fig. 4.49.

Final remarks

As suggested in [94], feedback delay networks (FDN) with short delay lines may be

also be used to produce resonances irregularly spread over frequency such as the body

of the violin.
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Figure 4.43: Spectra corresponding to the waveforms of Fig. 4.42.

Mathews and Kohut [69] showed that in simulating the violin body, the exact

position and height of resonances is not usually important; on the contrary, the Q’s

of the resonances has to be sufficiently large and the peaks have to be sufficiently

close together.

Hutchins has found that the frequency spacing ∆ between the so-called A1 cavity

mode (430-490 Hz) and the C3 body mode (490-590 Hz) is critical to the overall tone

and playing quality of violin [49]. For example, a violin with ∆ between 60 to 80 Hz

is referred as suitable for soloist, while a violin with ∆ between 20 to 40 Hz is suitable

for chamber music players.
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Figure 4.45: Dimensions of the trapezoidal waveguide mesh used to simulate Savart’s
violin.
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Figure 4.46: Top: impulse response, bottom: frequency response of Savart’s trape-
zoidal violin.
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Figure 4.47: Simplified block diagram of the combination of the physical model and
the trapezoidal mesh.
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Figure 4.48: Top: outgoing velocity at the bridge before being filtered by the resonances
of the trapezoidal mesh; bottom: outgoing velocity at the bridge after being filtered by
the resonances of the trapezoidal mesh.
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Figure 4.49: Top: spectrum of the outgoing velocity at the bridge before being filtered
by the resonances of the trapezoidal mesh; bottom: spectrum of the outgoing velocity
at the bridge after being filtered by the resonances of the trapezoidal mesh.



Chapter 5

Other instruments driven by

friction

In the previous chapter an efficient yet accurate model of a bowed string instrument

was proposed. The string was simulated using one dimensional digital waveguides,

and the body of the instruments was simulated using waveguides meshes.

In this chapter other instruments whose main excitation mechanism is friction,

such as the musical saw, the glass harmonica, the Tibetan bowl and bowed cymbals

are examined. As contemporary music adopts lots of these instruments, efficient

computer simulations of them become an interesting tool for interactive computer

music, providing to composers and performers different new sonorities to explore.

Moreover, friction driven sonorities appear also in everyday life. The sound of

a squeaky door, the noise of a brake and a chalk on a board are few examples of

the variety of sonorities that interaction between rubbed dry surfaces can produce.

Simulations of such everyday sonorities are also proposed. Starting by examining a

musical saw, whose characteristic pure tone is suitable for an efficient implementation,

more complex instruments such as bowed cymbals and plates are modeled.

Simulations in this chapter use banded waveguides, a synthesis technique first

introduced in [29, 28], which can be interpreted as an hybrid between modal synthesis

and digital waveguides.

The first part of this chapter provides an analysis of the differences between banded

100
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waveguides and modal synthesis. The second part describes synthesis techniques to

simulate unusual friction driven musical instruments.

5.1 Modal synthesis versus banded waveguides

The most elementary banded waveguide structure is depicted in Fig. 5.1. Compared

to the waveguide structure of Fig. 3.7, the low-pass filter has been replaced by a

band-limited operation represented by the block BP.

z-M BP+x(n) y(n)

Figure 5.1: Block diagram structure of one banded waveguide.

The idea behind banded waveguides is to adopt a filtered delay-line loop to model

a mode of a resonating system. The loop contains a bandpass filter which eliminates

energy at frequencies other than the desired mode. The band-limiting operation is

achieved by using second-order bandpass filters, for their efficiency and simplicity

[123]. Considering the following transfer function

H2(z) =
1− z−2

1− (2R cos θ)z−1 +R2z−2
(5.1)

where R and θ are free parameters which relate to bandwidth B, center frequency ψ

and gain A0, the following equations result [123]

R ≈ 1− B/2 (5.2)

cos θ = 2R
1+R2 cosψ (5.3)

A0 = (1− R2) sin θ. (5.4)

Notice how the filter of Eq. (5.1) has the same peak gain for all tunings.
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As shown by Smith in [115], it is possible to normalize exactly the resonant gain.

In this case, the transfer function of the bandpass filter becomes

H2(z) =
1−Rz−2

1− (2R cos θ)z−1 +R2z−2
(5.5)

0 0.5 1 1.5 2

x 10
4

-80

-60

-40

-20

0

20

40

60

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Figure 5.2: Frequency response overlays for the bandpass filter of Eq. 5.5.

Fig. 5.2 shows the frequency response overlay for the filters or Eq. 5.5, obtained

by varying the resonant frequency, keeping a constant value R = 0.99. Notice the

regularity of the amplitude of the frequency response as a function of tuning. The

same plot can also be found in [115].

As a further improvement, as suggested in [115], the resonator input is scaled by

a gain g = (1 − R2)/2, in such a way that the output signal power equals the input

signal power.

Using the bandpass filter just described, the free parameters of a banded wave-

guides are length of the delay-line d, resonance frequency of the band-pass R and
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bandwidth B. The length of the delay-line is tuned to the frequency fm of a mode

to be modeled. The relationship between fm, sampling frequency Fs and delay-line

length d is given by

d = Fs/fm (5.6)

To calculate the band-pass parameter R the same modal frequency fm is used and

converted into radians:

ψ = 2πfm/Fs (5.7)

Among these parameters, only the bandwidth B does not have a strict physical inter-

pretation. It is usually chosen to sufficiently reject other modes of the comb response

of a feedback delay-line filter.

BIQUAD

BANDPASS

a)

b)
+

DELAY

Figure 5.3: Block diagram structure of a) one modal resonator, b) one banded wave-
guide.

It is interesting to understand what is the advantage of using banded waveguides

versus modal synthesis, a synthesis technique described in Chapter 3. In the interpre-

tation of modal synthesis as a cascade of second order bandpass filters, as described

in [83] and shown in Fig. 5.3, part a), the bandpass filter of Eq. (5.5) is used. In this
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way, the only difference among modal synthesis and banded waveguides is the role of

the feedback delay line.

To understand the effect of such delay line, an unitary impulse is fed into one

modal resonator and one banded waveguide. The parameters of the resonant filter

are fm = 440 Hz, and R = 0.9977, and the simulations run at Fs = 44100. The delay

line has Fs/fm samples. The time domain output is shown in Fig. 5.4. In it, the solid

line represents the time domain simulation obtained by using the modal resonator,

while the dotted line represents the simulation obtained by using the one dimensional

digital waveguide.

Figure 5.4: Solid line: time domain simulation of an unitary impulse fed through a
bandpass filter; dotted lines: time domain simulation of an unitary impulse fed thorugh
one banded waveguide.

As expected, up to Fs/fm, i.e., up to about 100 samples, the two systems behave

the same way. Once the delayed samples are fed back into the bandpass filter, the

behavior of the two systems starts to change.
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Figure 5.5: Solid line: frequency response of a second order bandpass filter; dotted
lines: frequency response of one banded waveguide. The vertical line represents the
position in which the two systems start to behave differently.

In Fig. 5.4, this is apparent by noticing the higher amplitude of the simulation

using banded waveguides, which is due to the fact that rebouncing contributions are

added to the incoming waves. Notice how the slight pitch difference is due to the fact

that in this simulation integer delay lines are used.

Fig. 5.5 shows the frequency response of the two systems. As before, dotted lines

represent the frequency response of one banded waveguide, while solid lines represent

the frequency response of one modal resonator. The frequency response was obtained

by calculating the FFT of the first 4096 samples of the time domain waveform. Notice

how the two frequency responses are almost equivalent.

It is interesting to wonder if the slight difference on the behavior provides any ad-

vantage from a simulation point of view. Having a feedback system such as in banded

waveguide enables a more natural simulations of interactions between exciters and
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resonators. Moreover, modal synthesis does not retain any spatial information about

the wavetrains that propagate along a resonating object. In modal synthesis, spatial

information is not contained in the resonating structure, as in banded waveguides,

but it is imposed by varying the amplitude and phase of the different resonant modes.

As Fig. 5.6 shows, this is particularly relevant in the case of circular resonators,

where waves propagating from the excitation point along the two sides of the rim vary

their amplitude according to the excitation position. Maintaining both a spatial and

spectral representation of the modes, it is possible to produce a synthesis technique

which preserves a physical interpretation in terms of space and is also computational

efficient.

EXCITATION

vil vir

vol vor

voxl voxr

vixl

Extremity

vixr

Figure 5.6: Waves propagating around a circular resonator.

Considering the more accurate physical interpretation of banded waveguides, which

provides also better results in the quality of the synthesis, this technique is adopted

in the rest of this chapter to simulate a musical saw and other unusual friction driven

instruments.
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5.2 The musical saw

When an ordinary handsaw is bent into an S-shape, as shown in Fig. 5.7, an interesting

acoustical effect can occur. Tapping the blade of the saw reveals that beyond a certain

critical degree of curvature, a very lightly damped vibration mode appears which is

confined to the middle region of the S. This confined mode can be excited by a violin

bow, to produce the pure sound of the “musical saw”.

The origins of the musical saw go back to the early 20th century, thanks in par-

ticular to Leon Weaver. Later on, June Weaver started playing the saw using a violin

bow in a lap style, as shown in Fig. 5.7.

Figure 5.7: The author playing an ordinary handsaw.

5.2.1 Acoustics of the musical saw

Fig. 5.9 shows the spectrogram of the sound obtained from a Stanley 26 inches crosscut

saw bowed at the curvature. The saw was blocked in one side using a clamp, and

bent as shown in Fig. 5.8. This S-shape allows certain modes to be confined to the

vicinity of the inflection by a process of reflection from points of critical curvature.

The tone produced is almost sinusoidal, and the player controls the pitch by changing

the curvature of the blade. Increasing the curvature gives rise to a higher pitch. The
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Figure 5.8: Configuration of a saw fixed at both ends.

vibrato is obtained by slightly moving the extremity of the saw in the hand of the

player.

While the saw is bowed many partials appear in the spectrum, but when the bow

is released mainly the fundamental frequency resonates.

Scott and Woodhouse in [101] propose a detailed description of the vibrational

behavior of an elastic strip with varying curvature. Their analysis considers a parallel-

sided strip, whereas a normal saw blade has a tapering width. Since the research

presented in this dissertation has as main purpose the development of efficient phys-

ically inspired models which run in real-time and reproduce the sonorities created by

the real instrument, a different approach from the one proposed in [101] is therefore

needed.

5.2.2 Modeling a musical saw

Since the spectrum of a musical saw shows one strong mode, this instrument can be

modeled using one banded waveguide excited by the same friction driven mechanism

explained in the previous chapter and used for the bowed string simulation.

The spectrum of the simulated saw is shown in Fig. 5.10. Notice how, as in the

recordings of the real instrument shown in Fig. 5.9, when the saw is sustained by the

bow a rich spectrum appears, but when it is released only the fundamental frequency

has a strong perceivable amplitude.

Notice also how the starting transient appears faster than in the recorded version.

This is due to the switch on bowing gesture used in the simulated model.
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Figure 5.9: Sonogram of a bowed saw tone. The saw is bowed for about one second
and then left to resonate. While the fundamental has a long decay time, the higher
harmonics are quickly damped.

5.3 The glass harmonica

Glass harmonicas are musical instruments of two kinds. The first one, invented by

Benjamin Franklin in 1757 and shown in Fig. 5.11, adopts glass bowls turned by a

horizontal axis so that one side of the bowl dips into a trough of water. The second

one is a combination of wineglasses similar to the ones shown in Fig. 5.12. Different

melodies can be played on a set of tuned glasses (filled with appropriate amounts of

water or carefully selected by size), simply by rubbing the edge of the glass with a

moist finger. Rubbing rims of glasses in order to produce music became very popular

in Europe during the 18th century. Music on glasses has been successfully composed

by Mozart, Beethoven, and many others.



110 CHAPTER 5. OTHER INSTRUMENTS DRIVEN BY FRICTION

Time

F
re

qu
en

cy

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

3500

4000

Figure 5.10: Sonogram of a synthetic bowed saw tone. The saw is bowed for about 1.5
seconds and then left to resonate. Notice how, as in the real instrument, while the
fundamental has a long decay time, the higher harmonics are quickly damped. The
vibrato is also strongly noticeable.

5.3.1 Acoustics of wineglasses

The main vibrational modes of a wineglass resemble those of a large church bell.

The modes can be described with the label (m,n), where 2m is the number of nodes

around the rim and n is the number of nodes around the circumference of the glass.

The wineglass modes are generally of the form (m, 0), and the resonance frequencies

are nearly proportional to m2 [95].

During the recordings two wineglasses of diameter 6.7 and 6.0 cm, respectively,

and of height 10.3 and 9.5 cm were used. A microphone was positioned about 1 meter

from the glasses. The wineglasses were tapped with an impulse hammer, rubbed with

a wet finger, and bowed with a cello bow. Tapping the glass excites a number of “bell

modes”, while rubbing or bowing it strongly excites the (2, 0) mode and its harmonics,

and to a lesser degree the other modes as well.
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Figure 5.11: Benjamin Franklin’s glass harmonica, which he called “armonica”, as
seen in the Franklin Institute Science Museum in Philadelphia. Picture courtesy of
Ed Gaida.

5.3.2 Analysis of the recordings

Fig. 5.14 shows the analysis and synthesis steps performed in order to model the

glass harmonica as well as the Tibetan bowl described in the following section. From

the recorded impulse response, the frequencies of the main resonances of the instru-

ments were extracted, together with their damping factors, using spectral analysis.

The fundamental frequency of each mode was extracted in order to build the digital

waveguide network, each digital waveguide representing one mode. Moreover, the

decay time of each mode was used to build the low-pass filters that model the decay

characteristics of each mode. Each mode was used to build the digital waveguide

network.

Fig. 5.15 shows spectra of the steady-state portion of bowed and rubbed tones of
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Figure 5.12: Young performers playing the glass harmonica.

Mode Freq.(Hz) Amp. (dB) Decay (dB/sec)

(2,0) 676 -16.669 -19.474
(3,0) 1625 -18.207 -52.477
(4,0) 3185 -10.582 -86.801
(5,0) 5111 0 -153.23
(6,0) 7127 -12.963 -172.42

Table 5.1: Frequencies, relative magnitudes (normalized to 0 dB), and decay rates for
the first few major modes of a large wineglass.

the larger glass when played at medium volume, as well as its impulse response. Table

5.1 summarizes the resonance behavior of the same glass; here the mode frequencies

are proportional to m2.17.

5.3.3 Modeling a glass harmonica

A wineglass is a three-dimensional object and disturbances travel along the object in

all dimensions. The object is however axially symmetrical, and the dominant modes

are essentially circular modes [95]. Energy travels along the rim of the glass creating

a closed path. Essentially the rim represents a bar being bent into a circular shape,

closing onto itself at both ends. Hence the path is quasi one-dimensional.

For this reason, to model waves propagating along the rim of a wineglass we use
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Figure 5.13: A crystal wineglass.

a network of circular banded waveguides (CBW), each waveguide being tuned to

the fundamental frequency of the corresponding mode. A CBW is a connection of

two waveguides bandlimited by a bandpass filter. The output of each waveguide is

connected to the input of the other waveguide in a loop, as Fig. 5.16 shows.

Fig. 5.16 illustrates the situation in which only one mode is present. In the

simulated instrument many modes appear, which are connected to the excitation

model as shown in Fig. 5.17.

5.4 The Tibetan bowl

Oral tradition dates the singing bowl back to 560-180 B.C. in Tibet. These bowls

have been found in temples, monasteries, and meditation halls throughout the world.

Singing bowls are said to be made out of five to seven metals such as gold, silver,

mercury, copper, iron, metal and tin, each representing a celestial body. Each of

these metals is said to produce an individual sound, including partials, and together

these sounds produce the exceptional singing sound of the bowl. Each bowl is hand

hammered round to produce beautiful harmonic tones and vibrations. Today they

are used in music, relaxation, meditation, and healing. The bowl used as a starting

point for the simulations is shown in Fig. 5.18.
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Figure 5.14: Analysis and synthesis steps to obtain the bowl and wineglass models.

5.4.1 Acoustics of the Tibetan bowl

From a perceptual point of view, the sound of a Tibetan bowl has two main char-

acteristics: long sustained partials and a strong characteristic beating. Beatings are

due to the slight asymmetries of the shape of the bowl. Without these asymmetries,

a phenomenon called degeneracy would appear, i.e., a phenomenon in which different

modes have the same frequency.

The impulse response of a Tibetan bowl while hit at eight different positions shown

in Fig. 5.19 was recorded. The bowl was hit using a hard mallet, and the radiated

sound was captured by a microphone placed at about 40 cm above the center of the

bowl, as shown in Fig. 5.20.

The frequency responses corresponding to the eight different positions of Fig. 5.19

are shown in Fig. 5.21. In the topmost plot, the location of the eight modes is also

represented. Notice the evolution of the modes according to the hitting positions.

Notice also how the location of the modes strongest modes is clearly visible in the

spectrum.

Fig. 5.22 shows the results of the peak detection algorithm obtained by performing

a spectral analysis of the evolution of the partials of the Tibetan bowl. The impulse

response of the instrument was analyzed performing an STFT of the sustained portion

of the tone. The signal was windowed using an Hamming window of 2048 points. The
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Figure 5.15: Spectrum of a large wineglass. Top: hitting the glass with a hard mallet;
center: bowing with a cello bow; bottom: rubbing with a wet finger. The circles indicate
harmonics of the (2, 0) mode, and the x’s indicate the (m, 0) modes for m = 2 to 6.
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Figure 5.16: Digital waveguide network structure of the bowl resonator. Representa-
tion of one mode. Each bi-directional delay line contains the waves propagating in
the two sides of the bowl.

size of the overlap between windows was of 256 points. On the top of the plot the

two modes at lowest frequency is displayed. Notice the slow decay time of the three

main modes. Notice also how the pitch detection algorithm is able to identify the

characteristic beating of the instrument.

5.4.2 Modeling a Tibetan bowl

Considering the strong similarities between the structure of the bowl and the one

of the wineglasses, circular banded waveguides were used to implement the bowl

model. Beatings were implemented using detuned banded waveguides, i.e., banded

waveguides made of a slight different length [107].

The spectrum of the synthetic bowl is shown in Fig. 5.23. Notice how the two

main characteristics of the spectrum of the Tibetan bowl, i.e. the long decay time

and the beatings, are present.

5.5 Bowed cymbals and plates

Contemporary music performances have seen a wide use on stage of bowed percus-

sion instruments. It is therefore interesting to create computer simulations of such

instruments, to be used in interactive performances.
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Figure 5.17: Complete model, connecting the exciter and the resonator. Each mode
is modeled as shown in Fig. 5.16. The dotted connection between the source and the
resonator is due to the fact that they can be connected with either a feedback or a
feed-forward loop.

Figure 5.18: The Tibetan singing bowl used for the analysis.

Gongs and cymbals with shallow curvature exhibit a range of striking auditory

effects such as pitch glide and energy cascade towards high frequencies, which are

commonly used in Eastern music. These effects all depend upon dynamic nonlin-

earity, and in some cases upon chaotic vibration [31]. In instruments such as gongs

and cymbals, while the modes are clearly distinguishable at low frequencies, at high

frequencies they often mix with one another.

The nonlinear coupling between vibrational modes, moreover, is pretty strong,

which makes many partials appear quickly in the spectrum. This is true no matter

how the cymbal is excited.
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Figure 5.19: The figure shows the eight different positions in which the bowl was hit
during the recordings.

5.5.1 Acoustics of bowed cymbals and plates

Fletcher in [31] proposes an investigation of nonlinearities in cymbals. The result

of exciting a cymbal with a sinusoidal shaker shows that, while at low amplitudes

the radiated sound is concentrated at the fundamental of the exciting frequency,

increasing the amplitude enhances also the relative levels of all the partials. At a

critical excitation amplitude the spectrum develops a complete set of subharmonics,

and transitions to fully chaotic behavior can appear.

The mathematical problem of analyzing cymbal behavior in detail is rather com-

plex. The frequency response of a bowed cymbal presents a large number of potentially

active modes.

Fig. 5.27 shows the frequency response of an orchestral cymbal of diameter 41 cm

bowed with a violin bow. The recording was made in a quiet room and the microphone

placed about .3 meters from the cymbal. Some prominent peaks comprise the more

steady oscillation of the cymbal, and there is still much energy at high frequencies,

where modes are very dense.
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Figure 5.20: Position of the microphone used to record the impulse responses of the
Tibetan bowl.

5.6 Banded waveguide mesh

In the previous chapters, digital waveguides were introduced as an efficient synthesis

technique to model quasi-harmonic resonating objects. Moreover, the digital wave-

guide mesh was used to simulate bodies of complex resonators such as the violin.

In this chapter, the banded waveguide approach was adopted to simulate unusual

friction driven musical instruments such as the musical saw and the Tibetan bowl.

The solutions proposed until now work well for resonators which present a rather

limited amount of modes. For more complex resonators such as cymbals and plates,

a different approach is more suitable. Since the ultimate goal is to create efficient

sound synthesis models which run in real-time and perceptually reproduce sonorities

of real instruments, a new solution is necessary.

In this dissertation a new resonator structure called banded waveguide mesh is

proposed. The banded waveguide mesh is an extension to multiple dimensions of the

banded waveguide, in order to allow a real-time implementation. The spectrum of a
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Figure 5.21: Spectra resulting from varying the excitation position of the bowl. From
top to bottom the plots represent positions from one to eight respectively, according
to Fig. 5.19. In the topmost plot the location of the eight modes is also represented.
Notice the evolution of the modes according to the hitting positions.

vibrating system is split into frequency bands. For frequency bands where a single

resonance is present, a one-dimensional digital waveguide is used. For bands where

resonances are more complex, a 3D digital waveguide mesh is used, whose dimensions

are chosen in order to match statistically and psychoacoustically the resonances of the

high frequencies of the modeled object. More precisely, let fc be the cutoff frequency

above which an adequately high concentration of modes appear in the spectrum. For

frequencies below fc, banded waveguides simulate the modes of the resonators with

higher amplitude. For frequencies above fc, a 3D mesh simulates statistically and

perceptually the high frequencies modes of the resonator. Let f0m be the fundamental

frequency of the mesh, i.e., the lowest mode generated by the mesh. Notice that the

higher the value of f0m, the smaller the dimensions of the waveguide mesh and the

more efficient the implementation. The choice of f0m, therefore, is an important
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Figure 5.22: Results of the peak detection algorithm on the Tibetan bowl’s impulse
response. Notice how the algorithm correctly detects the beating, which appear as
amplitude modulation of the modes of the instrument with the longer decay time.

decision for the resulting computational cost. As an example, the spectrum of a

cymbal while hit at one extremity with a hard mallet is shown in Fig. 5.25. Notice

how, up to about 8000 Hz, it is possible to identify bands where strong resonances

are present. Above 8000 Hz modes are more dense and overlap. In this case, banded

waveguides simulates mode up to 8000 Hz, while a 3D mesh simulates the dense

concentration of modes above 8000 Hz.

The banded waveguide mesh is therefore a parallel connection of banded waveg-

uides and one 3D mesh for high frequencies. The structure of a banded waveguide

mesh is shown in Fig. 5.26. As in the case of banded waveguides, reflection filters are
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Figure 5.23: Spectrogram of the synthetic Tibetan bowl.

included in the structure in order to achieve desired decay characteristics.

Notice how the goal of the banded waveguide mesh is to obtain a small reverber-

ator which statistically and perceptually behaves like the physical instrument which

the mesh is simulating. In this case, the banded waveguide mesh does not retain any

physical interpretation concerning the stucture of the modeled object. However, the

development of such a modally dense small box reverberator allows to faithfully repro-

duce complex sonorities such as the ones produced when bowing plates or percussion

instruments.

5.6.1 Modeling bowed cymbals

As an application of a complex resonator which is suitable to be simulated using a

banded waveguide mesh, a model of bowed cymbal is proposed. Bowed cymbals lend

themselves well to being modeled with a banded waveguide mesh structure. Low

modes are excited by the bowing and energy is transfered to high-frequency modes

which are chaotically coupled. The manner of excitation of these strong lower modes
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Figure 5.24: An example of a bowed cymbal. Top: time domain waveform (sustain,
decay and release). Bottom: frequency response; notice the density of high frequency
modes.

rely on the detailed mechanical interaction of the bow and the rim, and thus an

interface between the bowing and the resonating plate is needed which preserves the

spatiality of the bow/cymbal contact. Banded waveguides allow individual modes to

be controlled in time, frequency and space. The shimmery, noiselike high-frequency

modes are not a direct consequence of the bow excitation, so a banded waveguide

mesh can be used as an approximation of a dense modal region.

Bowed cymbals can produce a wide range of sonorities with only small variations

in bowing force, velocity and position. In certain cases the cymbal produces a very

noisy growl and modes are very dense throughout the spectrum. In this case, a

waveguide mesh with sufficient mode density at the lower frequency range would be

too large to be implemented in real-time.

For low frequencies, banded waveguide structures allows for exact tuning of partial
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Figure 5.25: Spectrum of a cymbal while hit with a hard mallet at one extremity. The
circles represent the locations of the strongest low-frequency resonances.

frequencies and hence avoids problems of waveguide meshes with grid dispersion and

the related difficulty of tuning modes exactly [27].

In this application, due to the density of modes in the range modeled by the

mesh, these difficulties can be neglected. The spectrum of the simulated bowed

cymbal is shown in Fig. 5.27. The resonator was bowed with bow force fb = 0.31

N and bow velocity vb = 0.035 m/s, at one extremity of the mesh. The top part

of Fig. 5.27 represents the frequency response of the bowed low-frequencies banded

waveguides. The plot in the center represents the frequency response of the bowed 3D

mesh. The bottom plot represents the complete resonator model, i.e., the combination

of the banded waveguides and the 3D mesh. Notice how the nonlinearity of the

friction driven excitation mechanism allows several modes to appear in the spectrum.

Notice also how the spectrum of the 3D mesh is, as expected, rather weak at low
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Figure 5.26: A banded waveguide mesh with an arbitrary number of one-dimensional
digital waveguides and a digital waveguide mesh.

frequencies. From a perceptual point of view, the simulation results obtained by

bowing the parallel connection of the banded waveguide plus the 3D mesh provide

much more satisfactory results.

The resulting time and frequency domain simulations are shown in Fig. 5.28. No-

tice the complexity of the time domain as well as of the frequency domain waveform.

5.7 Other instruments

In addition to the instruments presented in the previous section, interesting sonorities

are produced also by other unusual friction driven musical instruments such as the

cuica and the guiro.

The cuica is a single-headed Brazilian friction drum, in which sound is produced

by rubbing a short stick attached to the membrane on the inside of the instrument.

It produces an unearthly sound and exceptional pitch range: hence its popularity as

a solo instrument. The pitch is altered by pressing the thumb against the skin near

the node of the friction stick.

The guiro is a percussion instrument from Panama made from a gourd. A stick

is scraped across the guiro’s notched surface to produce its sound. Modern guiros



126 CHAPTER 5. OTHER INSTRUMENTS DRIVEN BY FRICTION

0 2 4 6 8 10 12 14

x 10
4

-60

-40

-20

0

20
A

m
pl

itu
de

 (
dB

)

0 2 4 6 8 10 12 14

x 10
4

-40

-20

0

20

40

A
m

pl
itu

de
 (

dB
)

0 2 4 6 8 10 12 14

x 10
4

-60

-40

-20

0

20

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

Figure 5.27: Spectrum of a synthetic bowed cymbal. Top: bowed low-frequency res-
onators, center: bowed 3D mesh, bottom: the complete model.

are made from wood or plastic. Models of such instruments are not described in

this dissertation. However, it is interesting to observe that their sonorities can be

simulated by using the same friction driven excitation mechanism.

5.8 Friction in everyday life

In everyday life, the awareness of friction as an acoustic phenomenon is mostly related

to such unpleasant situations as squeaks and squeals in automotive environments, or

rail-wheel noise. However, as described before, friction affects the sonic environment

in different ways, and sometimes friction induced vibrations are also desirable. Among

the many everyday examples of friction sounds, a bowed string and brake noise rep-

resent probably the extremes in terms of acoustic output [3]. No matter which is the

degree of appreciation of friction sounds, their ubiquitous presence in our everyday
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Figure 5.28: Top: time domain waveform of a synthetic bowed cymbal. Bottom:
frequency domain waveform of a synthetic bowed cymbal.

life makes them an interesting research topic not only in robotics and haptics but also

in virtual reality simulations. In a collaboration with Federico Avanzini and Davide

Rocchesso, several animations using external graphical libraries of pd, such as the

OpenGL-based gem1 were designed. The applications are highly interactive and use a

standard mouse as the input device for controlling high-level parameters. Namely, x-

and y-coordinates of the pointer are linked to the external forces fee and the normal

force fb, respectively.

The elasto-plastic friction model described in Chapter 2 was used to produce the

sound connected to such animations. The parameters of the elasto-plastic friction

model, together with a phenomenological description, are described in the following

section.

1http://gem.iem.at/
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5.8.1 Control parameters

High-level interactions between the user and the audio objects rely mainly upon

three interaction parameters. These are the external forces acting on each of the two

objects, which are tangential to the sliding direction, and the normal force fN between

the two objects. It must be noticed that treating fN as a control parameter is a

simplifying assumption, since oscillatory normal force components always accompany

the friction force in real systems [3]. The remaining parameters belong to a lower

level control layer, as they are less likely to be touched by the user and have to be

tuned at the sound design level.

Such low-level parameters can be grouped into two subsets, depending on wether

they are related to the resonators’ internal properties or to the interaction mechanism.

Each mode of the two resonating objects is tuned according to its center frequency and

decay time. It has been shown [62] that these parameters are strictly related to the

perception of material. Additionally, a modal gain (which is inversely proportional to

the modal mass) can be set for each resonator mode, and controls the extent to which

the mode can be excited during the interaction. The implementation allows position

dependent interaction by giving the option to choose any number of interaction points.

A different set of modal gains can be set for each point.

A second subset of low-level parameters relates to the interaction force specifica-

tion. The triple (σ0, σ1, σ2) (see Eq. (2.13)) defines the bristle stiffness, the bristle

internal dissipation, and the viscous friction, and therefore affects the characteristics

of signal transients as well as the ease in establishing stick-slip motion. The triple

(fc, fs, vs) (see equation (2.14)) specifies the shape of the steady state Stribeck curve.

Specifically, the Coulomb force and the stiction force are related to the normal force

through the equations fs = µsfN and fc = µdfN , where µs and µd are the static

and dynamic friction coefficients. Finally, the breakaway displacement zba (see equa-

tion (2.15)) is also influenced by the normal force. In order for the function α(v, z) to

be well defined, the inequality zba < zss(v) ∀v must hold. Since minv zss(v) = fc/σ0,

a suitable mapping between fN and zba is

zba = cfc/σ0 = cµdfN/σ0, with c < 1. (5.8)
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One approach to determine the low-level model parameters is “hand and hear” direct

manipulation. Since many “knobs” are available, the phenomenological description

of model parameters given in Table 5.2 can be a helpful starting point for the sound

designer. Besides direct empirical search, modal parameters can be sometimes found

in closed form (only for simple geometries), they can be obtained from analysis of

recorded sounds of real objects [84], or derived from finite element object model-

ing [78]. Interaction parameters can also be found from analysis of real signals.

Parameter estimation techniques are the subject of many studies in automatic con-

trol, an extensive discussion of such issues is provided in [4]. In certain cases typical

parameter values can be found from the literature (see e.g., [8] for bowed string in-

struments).

Symbol Physical Description Phenomenological

Description

σ0 bristle stiffness affects the evolution of mode
lock-in

σ1 bristle dissipation affects the sound bandwidth
σ2 viscous friction affects the speed of timbre

evolution and the sound pitch
σ3 noise coefficient affects the perceived surface

roughness
µd dynamic friction coeff. high values reduce the sound

bandwidth
µs static friction coeff. affects the smoothness of

sound attack
vs Stribeck velocity affects the smoothness of

sound attack
fN normal force high values give rougher and

louder sounds

Table 5.2: A phenomenological guide to the variables of the elasto-plastic friction
model.

Braking effects Through several mechanisms, different kinds of vibrations and

sonorities develop within brakes. In the case of rotating wheels slipping sideways
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Figure 5.29: 3D animation and waveform: a wheel which rolls and slides on a circular
track.

across the rails, the friction forces acting at the wheel rim excite transverse vibrations.

In order to test the ability of the model to simulate brake noise, the simulation

depicted in Fig. 5.29 has been designed, where a wheel driven by the external force

fee rolls on a circular track. The rolling sound is obtained as the result of a sequence

of micro-impacts [93].

When a positive normal force is applied, the wheel is blocked from rolling and

the friction model is triggered. Neat stick-slip is established only at sufficiently low

velocities, and brake squeals are produced in the final stage of deceleration. The

resulting effect convincingly mimics real brake noise.
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Figure 5.30: 3D animation and waveform: a moisty finger rubbing a crystal glass.

Wineglass rubbing An animation of a rubbed wineglass was furthermore de-

signed, using the wineglass model previously described in this chapter. As in the

previous example, the rubbing finger is controlled through mouse input. Interest-

ingly, setting the glass into resonance is not a trivial task and requires some practice

and careful control, just as in the real world.

Door squeaks The third everyday sound which was simulated is the squeak pro-

duced by the hinges of a swinging door. In this situation, different combinations of

transient and continuous sliding produce many squeaks which create a broad range of

sonic responses. The example depicted in Fig. 5.31 uses two exciter-resonator pairs,
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Figure 5.31: 3D animation and waveform: a swinging door, each of the two shutters
is linked to a friction module.

one for each of the shutters. In this case the modal frequencies of the objects have

been chosen by hand and hear tuning on the basis of recorded sounds. The results

are especially convincing in reproducing complex transient and glissando effects which

are typically found in real door squeaks.

5.9 Final remarks

In this chapter computer models of different friction driven systems based on several

flavours of banded waveguides have been proposed. An overview which summarizes
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the available literature on physics based models of friction driven musical instrument

is given in Table 5.3.

Instrument Characteristics Modeling technique

bowed string quasi-harmonic modes digital waveguides [71, 120, 117]
bowed bar few inharmonic modes banded waveguides [29]

and modal synthesis [54]
musical saw one strong mode banded waveguides [104]
Tibetan bowl few inharmonic modes banded waveguides [28, 107]
wineglass few inharmonic modes banded waveguides [28, 107]

and modal synthesis [93]
squeaking doors few inharmonic modes modal synthesis [93]
guiro few inharmonic modes; PhiSM [18]

combination of stick-slip
and transient excitation

bowed cymbals many inharmonic modes banded waveguide mesh [103]

Table 5.3: Summary of physical modeling techniques used to simulate different friction
driven musical instruments.

For a given instrument, the choice of a particular synthesis technique which simu-

lates it, is given by different factors. As shown in Table 5.3, digital waveguides are an

efficient synthesis technique to simulate quasi-harmonic resonators such as strings.

For systems with few inharmonic modes, usually modal synthesis or banded waveg-

uides are preferred. Physically informed sonic models (PhiSM) are a synthesis tech-

nique introduced by Cook in [18]. The idea behind PhiSM is to use particle synthesis

models, in which each particle is a modal object with a certain frequency and decay

time. A probability function describes how such particles interact. PhiSM algorithms

are particularly useful to simulate sounds of shakers, and maracas, although they have

also been used in [18] to reproduce friction driven instruments such as a guiro.

Since none of the previous solutions is suitable to simulate sonorities produced

when bowing complex resonators such as a cymbal, in this dissertation a new resonator

structure called the banded waveguide mesh was introduced.

Fig. 5.32 shown the block diagram of the different exciter-resonator structures

adopted in this dissertation. For simplicity, the excitation is placed at one side of
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the waveguide and losses are not represented. Fig. 5.32 part A) represents a one

dimensional waveguide (1D WG) excited in a feedback loop by a nonlinear mechanism

(NL). In this dissertation, the nonlinear mechanism is represented by the friction

model. Notice how, in all the different configurations, the friction model is also the

only nonlinearity present in the system. Fig. 5.32 part B) represents the same digital

waveguide as before, with a model for the body resonances as proposed in Sec. 4.6.

Fig. 5.32 part C) represents one banded waveguide (1D BW) such as the one used

to simulate a musical saw, while Fig. 5.32 part D) represents a connection of several

banded waveguides (in this case two) which was the model adopted to simulate, for

example, the Tibetan bowl and the rubbed wineglass. Fig. 5.32 part E) represents

the banded waveguide mesh, i.e. the structure proposed to simulate complex bowed

resonators.

Notice how an automatic technique which analyzes a resonating object, and de-

termines the most suitable synthesis technique to simulate such object, does not exist

yet. This issue is left for further research.
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Figure 5.32: Block diagrams of the different waveguide-based data structures developed
in this chapter and in the previous one. For simplicity, it is assumed that the excita-
tion point is placed at one extremity of the waveguide, and losses are not represented.
A) a one dimensional digital waveguide, B) a one dimensional digital waveguide fil-
tered through the body model described in Sec. 4.6, C) one banded waveguide, D) a
connection of two banded waveguides, E) a banded waveguide mesh.



Chapter 6

Playability studies

It is well known by bowed string players that some instruments are easier to play than

others, although defining what makes an instrument more or less playable is not an

easy and absolute task. Usually, skilled players are able to compensate for the lack

of quality of their instrument and manage to still produce pleasant sonorities.

An advantage of the availability of computer simulated bowed strings is the pos-

sibility of carefully controlling all the parameters that influence the resulting sonori-

ties of such instruments and investigate their role on the playability of the model.

Although bowed string physical models are not yet at the state to compete with

traditional instruments, much progress in the last decades has been obtained both

regarding computer simulations, some of which have been discussed in Chapter 4, and

also to create interfaces able to play such computer simulated instruments [76, 139].

In [100], Schumacher and Woodhouse mention four classes of parameters that are

related to a bowed string instrument. The first class, which is shown in Table 6.1,

represents the parameters related to the physical properties of the string itself, such

as the string’s length l, its tension T and mass per unit length M , and its Q-factor.

The second class of parameters, described in Table 6.2, refers to the parameters that

the player controls, such as the bow velocity, bow position, bow force and amount

of bow hair in contact with the string. Other parameters considered important for

the resulting sonorities are the parameters of the body of the instrument (i.e., the

resonances of the body of the instrument) and the friction parameters. In the case

136
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of a synthetic bowed string, friction parameters mean the particular friction model

used and the friction coefficients chosen for that particular model. A description of

the role of friction parameters for the elasto-plastic model described in Chapter 2 was

shown in Table 5.2.

Symbol Physical description Phenomenological description

B bending stiffness affects the string’s harmonicity
l,m, T string length, mass and tension affects the frequency
Q Q-factor affects the decay time of the string

Table 6.1: Physical parameters of a bowed string and their effect on the resulting
sonorities.

Symbol Physical description Phenomenological description

fb bow pressure affect amplitude, affects the timbre
vb bow velocity affects the amplitude and the tim-

bre
β bow position affects the timbre
dw bow width affects the timbre

Table 6.2: Player’s control parameters of a bowed string and their effect on the re-
sulting sonorities.

Fig. 6.1 shows three different spectra of the same violin tone bowed at three

different dynamic levels: pianissimo, mezzo forte and fortissimo. The combination of

the different input parameters of the violin allows to obtain these different dynamic

levels. Moreover, a change of dynamic does not simply mean that the amplitude of

the partials changes linearly, but creates also a significant variation in the timbre of

the instrument. As an example, an increase in bow pressure increases the overall

amplitude of the resulting tone, but also varies significantly the timbre.

In this chapter the role of the control parameters of different friction models is

explored when applied to a waveguide string resonator. The focus is on Woodhouse’s

playability definition [134], which is described in the following section.
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Figure 6.1: Spectral differences obtained by bowing a violin pianissimo, mezzo forte
and fortissimo, from [50].

6.1 Quality Measures

The quality of a bowed-string instrument is more reliably determined by the player

than the listener [99]. While the “tone” is clearly an important component of quality,

a “poor tone” can be compensated in many ways. A more intrinsic quality which is

less easily compenated is the “playability” of the instrument.

6.1.1 Evaluating playability

“Playability” can be loosely defined as the “volume” of the multidimensional param-

eter space in which “good tone” is produced.
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The “playability” evaluation technique, described in [134, 100, 99], includes two

high-level components: (1) a bowed-string software model [71] which is calibrated

by measured and/or inferred physical data, and (2) an algorithm for evaluating the

quality of the model’s output [134, p. 149],[99].

In this particular study, we define playability in terms of the minimum and maxi-

mum bowing force over a range of bowing positions for steady bowing (constant bow

force and velocity). The type of bowed-string motion is automatically classified [134]

for a reasonable range of bow forces and positions along the string, and these are

used to produce a kind of empirical “Schelleng diagram” [135]. As discussed in the

following subsection, a Schelleng diagram displays at a glance the region of “good be-

havior” for the bowed string model, i.e., the region of the parameter space in which

simple “Helmholtz motion” is obtained.

6.1.2 Schelleng Diagram
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Figure 6.2: Theoretical Schelleng diagram.

Fig. 6.2 shows the classical “Schelleng diagram” [98] indicating the theoretical

minimum and maximum bow force as a function of bow position along the string.

Between the bow-force limits, “Helmholtz motion” is possible. Helmholtz motion

is characterized by a single “corner” traveling back and forth on the string under
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an approximately parabolic envelope. While the corner is between the bow and the

nut or finger, the string is sticking to the bow. When the corner is on the shorter

part of its journey, between the bow and the bridge, the string is slipping under the

bow. This fundamental picture of normal bowed-string behavior was first discovered

and described by Helmholtz in the mid-nineteenth century [130]. Further details

of possible bowed-string motion are summarized in [99], and a review of theoretical

models can be found in [133].

Schelleng’s formula for maximum bow force is given by:

fmax =
2vb

Y0β(µs − µd)
(6.1)

where, as before, vb is the bow velocity, Y0 is the characteristic string admittance, µs

and µd are the static and dynamic friction coefficients respectively and β is the bow

position. Minimum bow force is given by:

fmin =
vb

2RY 2
0 β

2(µs − µd)
(6.2)

where R is the assumed dashpot rate of the bridge.

Below the minimum bow force, a second Helmholtz corner is likely to appear (or

more), due physically to multiple slips per period. This regime is is often referred to

as “surface sound” and is common in “sul ponticello” playing.

Above the maximum bow-force, the Helmholtz corner may not be strong enough

to initiate slipping when passing the bow toward the bridge. In this case, the time-

keeping function of the traveling corner may be disrupted, leading to aperiodic, even

“raucous” sound.

Part of the “playability” of a bowed-string instrument is the ease with which

Helmholtz motion can be achieved. Skilled players strive to achieve Helmholtz motion

as quickly as possible in “smooth” playing [40, 8]. It is even possible to hit Helmholtz

motion immediately on the first period, which is especially desirable on a double bass

for which a single period can be tens of milliseconds long.

All the simulations in this chapter examine a cello D string with bending stiffness
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Figure 6.3: An example of anomalous low frequency motion.

Figure 6.4: An example of multiple slips motion.

B = 0.0004, where B is the coefficient of the fourth derivative of string displacement

with respect to position in the wave equation for stiff vibrating strings [134, p. 133], a

violin A string and a violin G string with no stiffness. The sampling rate in all cases

is set to 44.1 kHz.

In all simulations the string, starting from rest, is excited by a constant bow

velocity vb of 0.05 m/s.

In each computed Schelleng diagram, the bow force fb is varied between 0.005 and

5 N, and the normalized distance β of the bow from the bridge is varied between 0.02

and 0.4 (where 0.5 would be at the string midpoint).

The torsional wave speed is 5.2 times the transverse wave speed; the transversal
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Figure 6.5: An example of raucous motion.

and torsional impedances are 0.55 and 1.8 kg/s, respectively. At the nut and bridge

side, transversal and torsional wave losses are modeled by low-pass filters as described

in the previous sections.

In running such simulations, there is the desire to prove the following two state-

ments:

• the efficient implementation of the bow-string physical model described in Chap-

ter 4 produces similar playability regions as the ones described by Woodhouse

in [136].

• The elasto-plastic friction model behaves better than the “classic” friction mod-

els.

For this reason, as done in [136], we do not consider the role of the body, as well

as of the finite bow width.

6.2 Simulation results

The simulation results are summarized as follows. First, we consider the effect of

torsional waves for the plastic friction model (which is believed to be the most physi-

cally accurate). Next, we look at the other choices of friction models and we examine

presence or absence of torsional waves as well as presence or absence of stiffness.
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6.2.1 Effect of Torsion-Wave Simulation on Playability

Fig. 6.6 shows the empirical Schelleng diagram obtained by running the simulation

with the plastic friction model installed.1 The darker shaded region including the

squares is defined as the “playable” region of the parameter space, where Helmholtz

motion is established. The region including the circles is the one in which multi-

ple slips are established. We see that there is good qualitative agreement with the

theoretical Schelleng diagram, as desired and expected.

Fig. 6.7 shows the same case of Fig. 6.6 except without including simulation of

torsional waves. We find that the playability region is not altered very much when

torsional waves are removed. Looking only at the Helmholtz region, there are 65

pixels of Helmholtz-motion in Fig. 6.6, and 63 in Fig. 6.7. On the whole, the results

are fairly comparable. However, the Helmholtz region is more contiguous without

torsional waves. Evidently, torsional waves can reflect at a “bad time” so as to

disturb the Helmholtz motion, as indicated by the ’◦’ amidst the ’2’s in Fig. 6.6.

The good news for synthesizer builders is that the added expense of torsional

wave simulation (which basically adds a coupled “second string”) does not appear to

improve playability. Since torsional waves are not prominent in the radiated sound

either, it seems warranted to leave them out of synthesis models, even in the highest

quality instances.

It is well known that string losses are required for stability of the Helmholtz motion

[34, 135, 100]. The transduction of transverse waves into (more highly damped)

torsional waves represents a significant loss on the string. It is therefore natural to

ask whether the preceding results might be improved by including only the (real)

losses corresponding torsional wave creation, since this costs little or nothing extra

in the simulation. In other words, the model generates torsional waves realistically,

but they are treated as if they are fully absorbed by the string terminations. This

simplified torsional wave simulation was suggested as a possibility in [100, p. 512]. It

turns out as a surprise the fact that simulating the plastic model without torsional

waves, but maintaining losses generated by torsional waves at the bow, collapses the

1The automatic evaluation technique which estimates the quality of waveforms is courtesy of Jim
Woodhouse.
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playability region to zero pixels. The reason why this happens is not completely clear

and left to further investigation.

Fig. 6.8 shows the Schelleng plot obtained by running the plastic friction model

with torsional waves and the same parameters as before. The string, instead of

starting from rest, starts from an already established Helmholtz motion. Notice that,

as somehow expected, the playability region in increased.

6.2.2 Effect of the Bow-String Friction Model

Up to now we have only looked at the plastic friction model which is believed to be

the most accurate physically. We now look at the effect of using the older simpler

models labeled “exponential” and “hyperbolic” in the previous chapters.

Exponential Friction Model

Fig. 6.9 shows the Schelleng diagram obtained using the classic exponential friction

model with torsional wave simulation included. We see that the plastic friction model

(see Fig. 6.6) “plays better” close to the bridge, and it has a larger region of Helmholtz

motion, especially when bowing somewhat away from the bridge. The combined areas

of Helmholtz and multiple-slipping motion, however, are somewhat larger with the

exponential friction model.

Fig. 6.10 shows the exponential friction case with torsional wave simulation re-

moved (completely). As in the plastic friction-model case, the playability is com-

parable, and arguably even improved. Note the greater “reliability” of playing near

the upper bow-force limit. While there are 48 Helmholtz pixels in the full-simulation

case, and only 42 in the case without torsional simulation, the Helmholtz region is

more contiguous and solid, having fewer interior pitfalls.

Hyperbolic Friction Model

Fig. 6.11 and Fig. 6.12 show the Schelleng diagram obtained by running the simulation

using the hyperbolic friction model, with and without torsional waves respectively.

The results are quite similar to the preceding exponential model case.
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6.2.3 Effect of string stiffness

To examine if stiffness affects playability, Fig. 6.13 represents the simulated Schelleng

plot for a cello D string without stiffness. The simulation is run using the exponential

friction model. As expected, stiffness does not affect the playability of the model. The

same playability region as the one of Fig. 6.9 is obtained. As explained in Chapter 4,

the role of stiffness is to round the sharp Helmholtz corners. Stiffness, however, does

not affect the quality of the resulting waveform.

6.2.4 Velocity versus force playability region

It is also possible to examine if it exists a delimited playability region also in the

velocity versus force plane. Fig. 6.14 represents the simulated Schelleng plot for a

cello D string with stiffness and without torsional waves. The simulation is run

using the exponential friction model, and the plot is made in the velocity versus force

plane, maintaining a constant normalized bow position β = 0.07. Notice how it exists

a limited region in which the Helmholtz motion is achieved. As before, this region is

represented by the darker squares. Fig. 6.15 shows the simulated Schelleng diagram

for a cello D string with stiffness and with torsional waves. As in Fig. 6.14, the plot

is represented in the velocity versus force plane. Notice how the playability region

is somehow enhanced when torsional waves are taken into account. In this case the

role of torsional waves, i.e., to add losses which facilitates the establishment of the

Helmholtz motion, is apparent.

6.2.5 Three dimensional playability plots

In order to evaluate the playability for all variations of parameters, we represented the

playability in a 3 dimensional space. This is represented in Fig. 6.16. The simulation

is run using a cello D string with the exponential friction model and torsional waves.

In Fig. 6.16, only the region in which Helmholtz motion is achieved, i.e., the region

with dark squares, is represented. The z-axis represents bow velocity in a linear

scale between 0 to 1 m/s, while the x and y axis represent bow position and bow

force in a logarithmic scale respectively. For a given bow velocity of 0.05 m/s, the
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playability plot reads like the one shown in Fig. 6.9. Notice how the Helmholtz region

is concentrated in a limited portion of the space, as desired and expected. As a final

comparison, the playability of the elasto-plastic model described in Chapters 2 and

4 is examined. The simulation was run using the same string parameters as before,

and keeping a constant bow velocity vb = 0.05 m/s. The elasto-plastic friction model

parameters were σ0 = 4000, σ1 = 0 and σ2 = 0.25. Fig. 6.17 shows the results.

Notice how the elasto-plastic friction models behaves better than the hyperbolic and

exponential friction models. Notice also how the playability of the elasto-plastic

friction model is strongly comparable to the one of the plastic friction model (see

Fig. 6.6). This means that, by choosing appropriate values for the elasto-plastic

friction model parameters, a wide playability region can be obtained.

6.3 Conclusion

In this chapter we used playability plots as a way to investigate the role of the pa-

rameters of the physical model to achieve good tone. Results run on a cello D string,

running in real-time at a sampling rate of Fs = 44.1 kHz, excited by the exponential,

hyperbolic and plastic friction models are comparable to the ones reported in [136].

Moreover the playability of the elasto-plastic friction model was examined, and it was

shown that the elasto-plastic friction model behaves better than the “classic” friction

models.
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Figure 6.6: Simulated Schelleng diagram for the plastic friction model case. High
quality Helmholtz motion is indicated by open squares, and multiple slipping is plotted
using open circles. All other symbols denote generally less desirable modes of string
motion. A cello D string (f0 = 147 Hz) is excited with a constant bow velocity
vb = 0.05 m/s. Bow force and position are varied as shown in the figure.
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Figure 6.7: Simulated Schelleng diagram for the plastic friction model case, with
torsional wave simulation removed. As before, classic Helmholtz motion is indicated
by ‘2’, and multiple slipping by ‘◦’.
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Figure 6.8: Simulated Schelleng diagram for the plastic friction model case. A cello D
string (f0 = 147) Hz is excited with a constant bow velocity v0.05 m/s. Bow force and
position are varied as shown in the figure. The string is initialized with an already
established Helmholtz motion.
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Figure 6.9: Simulated Schelleng diagram for the exponential friction model case, with
torsional waves.
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Figure 6.11: Simulated Schelleng diagram for the hyperbolic friction model case, with
torsional waves simulations.
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Figure 6.12: Simulated Schelleng diagram for the hyperbolic friction model case, with
torsional waves completely removed.
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Figure 6.13: Simulated Schelleng diagram for the exponential friction model case,
without string stiffness.
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Figure 6.14: Simulated Schelleng diagram for the exponential friction model case, in
the velocity versus force plane, without torsional waves.



156 CHAPTER 6. PLAYABILITY STUDIES

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

-2

-1.5

-1

-0.5

0

0.5

Bow velocity (log10)

B
o
w
 
f
o
r
c
e
 
(
l
o
g
1
0
)

Figure 6.15: Simulated Schelleng diagram for the exponential friction model case, in
the velocity versus force plane, with torsional waves.
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Figure 6.16: 3D playability plot of the basic physical model with torsional waves.
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Figure 6.17: Playability plot for the elasto-plastic friction model, using the same string
parameters as before, with elasto-plastic parameters σ0 = 4000, σ1 = 0 and σ2 = 0.25
(see Chapters 2 and 4).



Chapter 7

Friction models in interactive

performances

In the previous chapters we examined friction sonorities with the goal of building

efficient real-time physical models. We studied the behavior of these models and

analyzed how input parameters affect their playability. We focused mainly on an

acoustical analysis of playability, i.e., we did not analyze the role of the interaction

between the human performer and the computer. During the past decade, lots of im-

provement has been made both on computer models of bowed strings and on building

input devices that allow to play such models. These devices are important in order for

the models to be playable in real-time, i.e. to be usable in an interactive performance.

This chapter describes research aimed to achieve such goals.

7.1 Playability and human computer interaction

The development of real-time modeling of musical instruments has exposed the prob-

lems of their gestural control. When a suitable device is attached to the physical

model, the natural interaction that exists between a musician and his instrument is

preserved, enabling the parameters of the model to evolve following the gestures of

the performer.

159
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7.2 Bow Strokes

Our first goal was the real-time simulation of highly skilled bowed string instrument

performance. In particular, we were interested in studying the model’s behaviour

when submitted to different bow strokes, such as detaché, balzato, staccato, flying

staccato and so on.

The basic gestural parameters which can be used to define bow strokes include: a

specific precision grip in which all five fingers are in contact with the bow, a variable

length linear displacement in the axis of the bow, a rotational movement relative to

the strings’ axes in order to choose the string to be played, the pressure of the bow

against the string, and the bow velocity. Other important variables include the bow

position relative to the string and the amount of bow hair in contact with the string,

i.e., a rotation with respect to the bow’s axis.

One must also be aware that the technical demands required to perform many

of these bow strokes are typically obtained by musicians only after years of practice.

Furthermore, in addition to the performer’s skilled motor behaviour, these bow strokes

heavily rely upon physical properties of both the string and the bow, such as the

elasticity of the bow hair, tension of the string, etc.

7.2.1 Controlling the model using a graphical tablet

In order to obtain an accurate simulation of the bow strokes mentioned above, it is

necessary to have a flexible input controller at one’s disposition. We have therefore

decided to use an input device that provides both the means to reproduce the fun-

damental characteristics of the performer’s gestural control and which is sufficiently

generic in order to be able to extrapolate the typical violin technique. Other impor-

tant considerations for our choice of input device were availability, accuracy, precision,

resolution and affordability.

Among the commonly available standard input devices that match the above

requirements, the one that appeared to best suit our needs was a WACOM graphic

tablet equipped with a stylus transducer. One of the main factors in our decision was

the number of control parameters simultaneously available [132]. More specifically,
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the stylus can provide control for five variables: horizontal and vertical position in a

plane, pressure perpendicular to the plane, and angle relative to both plane axes.
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Figure 7.1: Comparison between the degrees of freedom of the bow-string and the ones
of the pen-tablet interaction.

The stylus is then used to control bow force, bow velocity, distance from the

bridge and inclination of the bow. One can notice from Fig. 7.1 that the stylus

provides roughly the same control possibilities as those of a real bow, and that there

is also a direct correspondence between the physical parameters of the stylus and

those of the bow (e.g., position in x and y axis, force in the z axis and angle in both

x and y).



162 CHAPTER 7. FRICTION MODELS IN INTERACTIVE PERFORMANCES

Extending the Tablets Capabilities

The ability to use two devices on the same tablet simultaneously seems optimal

for simulating both hands of a bowed string instrument’s player. This allows the

performer to control bowing with one hand, while controlling pitch changes, vibrati

and glissandi with the other, either using a second stylus or a puck transducer.

After experiments with both devices, we noticed that the fact that they do not

provide the same physical interaction that exists between the fingers of the player and

the bow restrains optimal control. We coped with this problem by fitting the tablet

with sensors that can measure position and force simultaneously. These are shown in

Fig. 7.2.

Figure 7.2: WACOM tablet fitted with additional pressure and position sensors (on
the left side of the tablet).

Although positioning these sensors on the tablet does not provide the same tactile

feedback as the fingerboard of a violin or other stringed instrument, the left hand

finger position and pressure on a string of a real instrument may nonetheless be

simulated. The main advantage in using these extra sensors is that, when compared

to a stylus or a puck, they are operated using similar motor skills.
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Simulation of Bow Strokes using the Tablet

Using the stylus, we were able to reproduce most of the bow strokes (such as staccato,

balzato, martellato, and so on) without resorting to any special non-linear mapping of

stylus output parameters to model input parameters. In particular, even bow strokes

obtained by skilled musicians could be reproduced immediately and intuitively from

the use of the stylus in place of a bow. For example, to obtain a balzato the player

rubs the string quickly with the bow backward and forward, “jumping” on the string

using both his wrist and his forearm, and taking advantage of the elasticity of both

the string and the bow [102].

In order to examine the behavior of the model when submitted to fast repeated

balzatos, the player simply needs to rub the tablet with the pen backward and forward

and then release it. The evolution of the resulting parameters, shown in Fig. 7.3,

corresponds to measurements made by Askenfelt [7] on an actual violin.
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Figure 7.3: Top: pressure of the stylus on the tablet during balzato. Bottom: velocity
of the pen.

Note that in this bow stroke, while the hand that holds the stylus reproduces with

fidelity the movement performed using a bow, the behaviour of the controller is quite

different. An important characteristic of the balzato stroke is the fact that the player

takes advantage of the elasticity of both the string and the bow hair to facilitate the

bouncing of the bow. Since this elasticity is absent in both the tablet and stylus,

the performer must use a slightly modified gesture in order to furnish all the energy
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necessary for the stylus to rebound. A similar situation is observed in other bow

strokes that are completely based on physical properties of the instrument, the more

remarkable example of which is the gettato. In it the player simply allows the bow to

fall and freely rebound against the string. The rigid surfaces of the tablet and of the

stylus do not provide the same elastic feedback felt by the violinist.

The bow strokes shown so far have the common characteristic that the bow is

not in constant contact with the string, which is not always the case with other bow

strokes. For example, to play detaché the stylus simply moves back and forth along

the horizontal axis of the tablet, at an almost constant velocity and pressure, as shown

in Fig. 7.4. Another example would be staccato, in which the performer exerts a high

initial force and velocity and then stops the stylus almost immediately, as can be seen

in Fig. 7.5.

It is remarkable that, while learning to hold a bow and perform skilled bow strokes

requires a considerable amount of time, the familiarity with a device like a pen allows

the performer to obtain immediately a confidentiality with the controller.
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Figure 7.4: Top: pressure of the stylus on the tablet during detaché. Bottom: velocity
of the stylus.
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Figure 7.5: Top: pressure of the stylus on the tablet during staccato. Bottom: velocity
of the stylus.

7.3 Bowed string physical models and haptic feed-

back

The tablet appeared to be a convenient device to control the bowed string physical

model, for its availability in the market and for the ease to use. Despite the fact that

the table is an instrument easy to learn how to play, it shows some limitations such

as the ergonomics different from traditional bowed string instruments and its lack of

haptic feedback. By incorporating haptic feedback into the controller for the virtual

bowed string, it is possible to take advantage of the player’s existing sensitivity to the

relationship between their instrument’s feel and its sound in order to create a wider

range of parameters that can be sensed and controlled during performance.

Sile O’Modhrain in her PhD dissertation [81] discovered that haptic feedback

greatly increases the playability of virtual instruments. In this context, playability

is referred to as the ability of bowed string players to consistently perform different

bow strokes that produce violin sounds that are judged as perceptually acceptable

by professional bowed string players and also have waveforms that reside within the

playability region as defined in the previous chapter.

In order to introduce both force feedback and ergonomics that are reminiscent of a

traditional violin interface, Charles Nichols built the vBow [76, 77], a haptic feedback
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controller. The goal of the vBow is to be able to introduce a new violin interface that

addresses the limitations of MIDI violins as well as to provide a controller that can

also play other real-time synthesis tools.

The bowed string physical model described in chapter 4 has been successfully used

in connection with the vBow [77].

Figure 7.6: Playability chart of a virtual musical instrument

Another more general definition of playability is the ability of the virtual instru-

ment to be ergonomically playable, that is the player should be able to physically

manipulate the interface freely and with ease.

A chart that summarizes all the playability issues mentioned above is shown in

Fig. 7.6.

In order to explore all the previous definitions of playability and extend them, we

are currently interested in analyzing the possibility of reproducing traditional bowing

techniques using a bow controller that behaves in a manner as closely related to that

of a traditional violin bow as possible. This allows us to validate both the model and

the controller by comparing it to the behavior of the traditional instrument.
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7.3.1 The virtual violin project

The real-time bowed string physical model is currently used together with a wireless

bow controller developed by Diana Young [140, 108, 109]. The aim is to reproduce the

bow strokes that are most fundamental to the right hand technique of an accomplished

bowed string player.

The ultimate goal of this research is to create a bowed string instrument able

to reproduce the behavior of a traditional instrument as well as to create extended

performance techniques for bowed string players.

The bow controller used is a commercial carbon fiber bow, adapted by adding

a custom measurement system. The system is comprised of an electric field sensor

for measuring bow position (tip-frog / bow-bridge distance), commercial accelerom-

eters for detecting 3D acceleration, and foil strain gauges for measuring the strain

in the bow stick proportional to normal force on the string and the orthogonal force

corresponding to flexion toward and away from the scroll.

From these sensors, the parameters of bow velocity, bow-bridge distance, down-

ward force, and bow width (using tilt information provided by the accelerometers and

the second strain sensor) may be isolated from bowing gestures and used as input to

the physical model. For a detailed description of the bow controller, see [139].

In preliminary experiments we used a Macintosh G4 computer to run the Max/MSP

implementation of the bowed string physical model. The gestural data from the bow

controller was connected via a serial/USB converter to a USB port of the computer.

Recordings of both the violin audio and the bow controller data were made si-

multaneously within the Max/MSP environment. The gesture data was then used to

drive the physical model, which produced waveforms that were also recorded.

This setup was simple enough to allow fast and easy recording and testing, and was

used to reproduce bow strokes. The waveforms of the violin were then qualitatively

compared to those produced by the model using both time and spectral domain

evaluation and perceptual evaluation.

The integration of the bow controller hardware with the software model was ad-

dressed one input parameter at a time. In the first trial the downward strain sensor

was used to control the downward force parameter for the bowed string model.
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With the model parameters of bow-bridge distance, bow velocity, bow width, and

frequency held constant, the downward force was varied between 0 and 5 N.

Other than setting a threshold appropriate for the sensor range, it was unnecessary

to perform any adjustments to this mapping. Using the bow controller to play a single

string on the test violin, it was possible to compare the sound produced by the model

with that of the test violin. Sonorities which sounded appropriate for the amount of

pressure applied to the bow were produced.

Interestingly, the model produced sounds that seemed perceptually correct for

long sustained strokes as well as for short strokes with sharp attacks and decays.

7.3.2 Adding Velocity and Bow-Bridge Distance

Next, the bow velocity and bow-bridge distance controls were added by using the data

from the bow position sensor. By taking the data values corresponding to the tip and

the frog, the transverse bow position was determined, and from this the velocity value

was derived. The bow-bridge distance was taken as the sum of the tip and the frog

values.

It was possible to change the sound of the tones produced by the model by ad-

justing bow pressure, speed, bow-bridge distance, and by simply changing the bow

direction. As the sound of the test violin offered an easy comparison to the model,

playing two open strings (of the test violin) while controlling a single tone of the

model tuned to different intervals above and below the higher string was experi-

mented. Playing the small duet between real and virtual violins it was possible to

make small adjustments to the mappings so that the timbres sounded as though they

were all three emanating from the test violin.

7.3.3 Complete mapping

In order to build an expressive virtual musical instrument, the capture of the gesture

of the performance is as important as the manner in which the mapping of gestural

data onto synthesis parameters is done. In the case of physical modeling synthesis, a

one-to-one mapping approach of control values to synthesis parameters makes sense
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Figure 7.7: Mapping of the bow controller to the bowed string physical model.

due to the fact that the relationship between gesture input and sound production is

often hard-coded inside the synthesis model [48]. Because both the physical model and

the bow controller are developed according to physical input and output parameters,

the complete mapping between the two is straightforward. Fig. 7.7 shows how all the

data sent by the bow controller were mapped to the input parameters of the physical

model. Downward bow force of the controller is directly mapped into bow force in the

physical model. Bow velocity and bow-bridge distance were captured by measuring

the horizontal and vertical position of the bow respectively. Moreover, lateral strain

sensors were mapped onto the amount of bow hair in contact with the bow.

7.4 Recreating a virtual violin

In recent experiments [140, 109, 108], playability and bow strokes were explored by

using the wireless bow controller able to capture all the subtle nuances of bowing

gestures. Playing the bowed string physical model and an electric violin with the

same input parameters, it was possible to compare the resulting waveforms both
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perceptually and acoustically, and therefore validate the model.

7.5 Extended techniques for physical models

Up to this point, this dissertation has merely focused on the description of how

existing musical instruments can be digitally reproduced. From a musical perspective,

physical models become interesting when sonorities that cannot be achieved with real

instruments are created. Such extensions may not have scientific relevance, but are

noneless interesting from an artistic point of view.

Recent work has involved exploring extended techniques for physical models using

instrumental controller subsititution [12]. Instrumental controller substitution utilizes

the virtually disembodied nature of physical models as a means of exploring their

unique acoustic nature. The decoupling of the instrumental controller and the audio

synthesis is used as a compositional opportunity to expand the musical possibilities

of physical models.

Although such extensions are not described in this dissertation, it is important

to stress their existance which opens new possibilities for interactive compositions,

virtual reality and augmented sonic environments.



Chapter 8

Conclusions and future work

In this thesis different models of friction driven sonorities have been examined. The

importance of friction in musical applications and everyday life sonorities has been

outlined and examined, and state-of-the-art friction models have been applied to a

musical context.

The models developed in this dissertation have been implemented in real-time

under the Max/MSP and Pd platform, as described in Appendix A, and are down-

loadable from the website http://www-ccrma.stanford.edu/∼serafin.

These models have already been, in our opinion, successfully used in many real-

time interactive performances. In making such models available, the author wishes

that more composers and sound artists will find the sound of friction inspiring.

8.1 Future work

There are still many interesting applications related to friction driven physical models,

which are outlined in the following section.

8.1.1 A generalized friction controller

The idea behind a generalized friction controller is to have a device able to play all

the friction driven musical instruments. So far, many controllers for bowed strings

171
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have been developed, and some of them have been described in Chap. 7.

However, there does not yet exist a controller able to drive in real-time all friction

driven instruments. In the previous chapter different controllers which offer many

possibilities to performers due to their traditional feel, appearance, and function have

been discussed. It is legitimate to ask whether in many scenarios a less traditional

interface may be more beneficial. Specifically, together with Diana Young a general

interface for the control of all friction-driven instrument models is under development

[110].

Such a device would likely share some of the physical qualities of a bow, but

having characteristics that imply different playing techniques. The challenges on the

design of this device are due to the fact that friction sounds are produced in different

ways such as perpendicular motion of the exciter on the resonator (like in the case of

the bowed string and the musical saw), or circular motion (like in the Tibetan bowl

and glass harmonica). We are currently experimenting with having a pressure sensor,

a combination of different types of position sensors (Hall technique), strain/bend

sensors like the ones used in the bow controller, accelerometers, and gyros for angular

velocity.

Such an instrument will give composers and performers great possibilities to ex-

plore and extend the sound of friction.

8.1.2 Perception of chilling sounds

Another interesting research direction is a perceptual investigation of the properties of

friction sounds. As outlined in this dissertation, different sonorities can be produced

by the same excitation mechanism.

However, it is not yet clear which is the mechanism which makes the human brain

perceive such sounds as belonging to different sources, or what makes those sounds

pleasant or unpleasant. This is an interesting topic which can be further explored.
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8.1.3 Friction models and graphical user interfaces

Another interesting issue is related to the use of friction models in human-computer

interfaces. Enhancing information in human-computer interfaces by using different

senses is a natural choice motivated by our daily interaction with the world. In

everyday life humans communicate and interact by using multiple channels which

are interdependent. Especially in applications that present a direct manipulation

interaction (e.g., icon dragging), typical visual feedback techniques tend to give the

impression that manipulation is happening on a surrogate object rather than a real

one. In order to provide substance to the manipulated objects, physical reality must

be mimicked more closely. In particular real objects tend to resist to motion due to

their inertial properties, friction, and so on.

Many kinds of haptic devices providing force feedback have been proposed and

manufactured as a direct solution to this kind of requirements. However, there are

many practical cases where it is desirable to substitute haptic feedback with other

modalities. One possible reason is that these devices are in most cases cumber-

some and expensive, another is that they provide a strictly personal display (e.g.,

a user cannot share a sensation of effort with an audience). A number of alter-

natives have therefore been proposed. Approaches based on purely visual feedback

have been demonstrated to be effective in some cases. Cartoon animation techniques

applied to widget components and graphical object manipulation do enhance the

interaction [126]. Force-feedback has also been visually simulated via cursor displace-

ment [129] and pseudo-haptic feedback [67].

However, in many applications the visual display does not appear to be the best

choice as a replacement of kinesthetic feedback. Touch and vision represent differ-

ent priorities [63], with touch being more effective in conveying information about

“intensive” properties (material, weight, texture, and so on) and vision emphasizing

properties related to geometry and space (size, shape). Moreover, the auditory system

tends to dominate in judgments of temporal events, and intensive properties strongly

affect the temporal behavior of objects in motion, thus producing audible effects at

different time scales. In the light of these remarks, audition appears to be an ideal

candidate modality to support illusion of substance [126] in direct manipulation of
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virtual objects, and indeed Massimino and Sheridan [68] have shown that audition is

an effective sensorial substitute for some typical manipulation tasks.

Together with Federico Avanzini and Davide Rocchesso, we are currently inves-

tigating the use of friction sounds for sensorial substitution, to examine if auditory

feedback can facilitate the development of a more user friendly human computer

interface, especially when a tactile force feedback is not available.

8.1.4 Friction models in multimedia and virtual reality

While sound synthesis techniques have until now been adopted mainly in the computer

music community, recently their interest has increased also in virtual reality, computer

animation and computer games [20]. The availability of parametric models whose

quality is constantly improving makes such models desireable for sound designers in

the entartainment industry.

As outlined in this dissertation, many sounds that are produced by musical in-

struments and everyday objects derive from interaction between rubbed surfaces. It

is therefore an interesting application to use such models in other fields where sound

plays an important factor. In this way high quality computer generated sounds would

be appealing not only to composers but to those who are interested in sound design

from different perspectives.



Appendix A

Implementation

The models proposed in this thesis have been implemented as extensions to the

Max/MSP [141] environment.

The bowed string physical model has also been developed in the Synthesis Toolkit

(STK) platform [17]. Figure A.1 shows the interface developed. The objects im-

plemented in Max/MSP are a bowed string physical model, a rubbed wineglass, a

musical saw a bowed cymbal and a singing bowl.

The squeaking doors, rotating wheels and rubbed wineglasses have been imple-

mented in Pd [89] and are available from the Sounding Object website.1.

The friction models described in this dissertation have been used in different ap-

plications. Some examples are the following:

1. PhD dissertation of Sile OModhrain: Playing by Feel: Incorporating Haptic

Feedback into Computer-Based musical Instruments, (bowed string physical

model in STK), see [81].

2. PhD dissertation of Charles Nichols: The vbow: an expressive musical controller

haptic human-computer interface, (bowed string physical model in STK), see

[77].

3. Compositions S-Trance-S, (Dis)appeances and S-Morphe-S by Matthew Burt-

ner (extended bowed string physical model and singing bowl respectively, in

1(http:///www.soundobject.org)
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Figure A.1: The Max/MSP interface for the friction models.

Max/MSP).

4. Hyperbow controller by Diana Young (bowed string physical model in Max/MSP).

See, for example, [108, 109, 140].

5. Requiem by Ching-Wen Chao, Stanford DMA dissertation, 2002 (tibetan bowl

physical model, in Max/MSP).

.



Appendix B

Numerical issues

In Chapter 2 we have shown that the elasto-plastic friction models are represented

through different non-linear coupling between the resonating objects. When the

continuous-time systems are discretized and turned into numerical algorithms, the

non-linear terms introduce computational problems that require to be solved ade-

quately. This is the topic of this Appendix.

B.1 Discretization

As described in Chap .4, the string resonator is represented by using a one dimen-

sional digital waveguide. In this section we describe how the interaction force f(n) for

the elasto-plastic model is computed at each time step, and coupled to the waveguide

resonator. At each time step n the variables [x(n), v(n)], representing the relative

position and velocity, and f(n), the friction force, have instantaneous mutual depen-

dence. That is, a delay-free non-computable loop has been created in the discrete-time

equations and, since a non-linear term is involved in the computation, it is not trivial

to solve the loop. This is a known problem in numerical simulations of non-linear

dynamic systems. An accurate and efficient solution, called K method, has been re-

cently proposed by Borin, De Poli and Rocchesso [10] and will be adopted here. First,

the instantaneous contribution of f(n) in the computation of vector [x(n), v(n)] can
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be isolated as follows:

[

x(n)

v(n)

]

=

[

x̃(n)

ṽ(n)

]

+ Kf(n) (B.1)

where [x̃(n), ṽ(n)] is a computable vector (i.e., it is a linear combination of past

values. Second, substituting the previous expression in the non-linear contact force

equation, and applying the implicit function theorem, f(n) can be found as a function

of [x̃(n), ṽ(n)] only:

f(n) = f

([

x̃(n)

ṽ(n)

]

+ Kf(n)

)

K method7−→ f(n) = h(x̃(n), ṽ(n)) . (B.2)

Summarizing, if the map f(n) = h(x̃(n), ṽ(n)) is known, then the delay-free loop in

the computation can be removed by rewriting the algorithm as

for n = 1 . . . samplelength

Assign f(n) = 0

Compute x
(b)
i (n) (i = 1 . . . N (h)),

Compute vh

Compute x̃(n), ṽ(n),

and f(n) = h(x̃(n), ṽ(n))

Update x
(b)
i (n) = x

(b)
i (n) + b

(h)
i f(n) (i = 1 . . . N (h))

Update string velocity

end

The dynamic equation for ż is discretized using the bilinear transformation. Since

this is a first order equation, discretization by the trapezoid rule is straightforward:

z(n) = z(n− 1) +

∫ nTs

(n−1)Ts

ż(τ)dτ ⇒

z(n) ≈ z(n− 1) +
Ts

2
ż(n− 1) +

Ts

2
ż(n) .

(B.3)
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Therefore, equations in the coupled numerical system for the friction force become:















z(n) = z(n− 1) + Ts

2
ż(n− 1) + Ts

2
ż(n)

ż(n) = ż(v(n), z(n))

f(n) = f(z(n), ż(n), v(n), w(n))

, (B.4)

where ż(v, z) and f(z, ż, v, w) are given in Eq. (2.13). It can be seen that at each

time step n the variables [v(n), z(n)] and ż(n) have instantaneous mutual dependence.

The K method [10] is adopted in order to solve this problem. The instantaneous

contribution of ż(n) in the computation of vector [x(n), v(n)] must be isolated so

that the K method can be applied on the non-linear function ż(v, z):

[

v(n)

z(n)

]

=

[

ṽ(n)

z̃(n)

]

+ K ż(n) , (B.5)

then

ż(n) = ż

([

ṽ(n)

z̃(n)

]

+ Kż(n)

)

K method7−→ ż(n) = h(ṽ(n), z̃(n)) . (B.6)

where ṽ and z̃ are –as above– computable quantities. From Eq. (B.3), the element

K(2) is easily found as K(2) = Ts/2, while z̃(n) = z(n−1)+Ts/2 · ż(n−1). Finding

K(1) is less straightforward, since the friction force itself depends explicitly upon v.

Recalling that

v(n) = vs(n)−
N(b)
∑

j=1

tmiẋ
(b)
i (n) , (B.7)

where vs(n) represents the string velocity, and substituting here the discrete-time

equations for ẋ
(b)
i (n), a little algebra leads to the result.

Having determined the K matrix, the K method can be applied and the algorithm

can be rewritten as
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for n = 1 . . . samplelength

Assign f(n) = 0

Compute x
(b)
i (n) (i = 1 . . . N (b)),

and vs(n)

Compute ṽ(n), z̃(n), and ż(n) = h(ṽ(n), z̃(n))

Compute v(n) = ṽ(n) + K(1)ż(n),

z(n) = z̃(n) + K(2)ż(n), and f(n)

Update x
(b)
i (n) = x

(b)
i (n) + b

(b)
i f(n) (i = 1 . . . N (b))

Update vs(n)

end

B.1.1 The Newton-Raphson algorithm

Two choices are available for efficient numerical implementation of the K method.

The first choice amounts to pre-computing the new non-linear function h off-line and

storing it in a look-up table. One drawback is that when the control parameters (and

thus the K matrix) are varied over time, the function h needs to be re-computed

at each update of K. In such cases, an alternative and more convenient approach

amounts to finding h iteratively at each time step, using the Newton-Raphson method.

This latter approach is adopted here. Since most of the computational load in the

numerical system comes from the non-linear function evaluation, the speed of conver-

gence (i.e. the number of iterations) of the Newton-Raphson algorithm has a major

role in determining the efficiency of the simulations.

Using the Newton-Raphson method for computing h means that at each time step

n the value h(n) is found by searching a local zero of the function

g(h) = ż

([

ṽ

z̃

]

+ Kh

)

− h (B.8)

The Newton-Raphson algorithm operates the search in this way:
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h0 = h(n − 1)

k = 1

while (err < Errmax)

Compute g(hk) from Eq. (B.8)

Compute hk+1 as hk+1 = hk − g(hk)
g′(hk)

Compute err = abs(hk+1 − hk)

k = k + 1

end

h(n) = hk

Therefore, not only the function g(h) but also its derivative g′(h) has to be evaluated

at each iteration. The computation of g′(h) is done in successive steps as a composite

derivative. First step:

dg

dh
=
∂ż

∂v
K(1) +

∂ż

∂z
K(2)− 1 . (B.9)

Second step (recalling Eq. (2.13)):

∂ż

∂v
= 1− z

[

(α+ v · ∂α/∂v)zss − α · v · dzss/dv

z2
ss

]

,

∂ż

∂z
= − v

zss

[

z
∂α

∂z
+ α

]

.
(B.10)

Third step (recalling Eqs. (2.15, 2.16)):

∂α

∂v
=



















π

2
cos

(

π
z − zss+zba

2

zss − zba

) dzss

dv
(zba − z)

(zss − zba)2
,

(zba < |z| < zss) &

(sgn(v) = sgn(z))

0 , elsewhere

(B.11)

∂α

∂z
=



















π

2
cos

(

π
z − zss+zba

2

zss − zba

)

1

zss − zba
,

(zba < |z| < zss) &

(sgn(v) = sgn(z))

0 , elsewhere

. (B.12)
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Last step (recalling Eq. (2.14)):

dzss

dv
= −sgn(v)

2v

σ0v2
s

(fs − fc)e
−(v/vs)2 . (B.13)

Computing these terms from the last step to the first step, the derivative g′(h) can

be obtained.

In order to develop a real-time model, it is essential that the number of iterations

for the Newton-Raphson algorithm remains small in a large region of the parameter

space. To this end, analysis on the simulations has to be performed, where model

parameters are varied over a large range. Such analysis shows that in every conditions

the algorithms exhibit a high speed of convergence. Empirical results show that the

number of iterations remains smaller than seven.
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for control of systems with friction. IEEE Trans. Autom. Control, 40(3):419–

425, 1995.

[25] J. Dieterich. Time dependent friction and the mechanics of stick slip. Pure

Appl. Geophys., 116:790–806, 1978.

[26] P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter. Single State Elasto-

Plastic Friction Models. IEEE Trans. Autom. Control, 2002.

[27] S. Van Duyne and J. O. Smith III. Physical modeling with the 2d waveguide

mesh. In Proc. International Computer Music Conference (ICMC), pages 40–

47, The Hague, 1993. ICMA.

[28] G. Essl. Physical Wave Propagation Modeling for Real-Time Synthesis of Nat-

ural Sound. PhD thesis, Princeton University, November 2002.

[29] G. Essl and P. Cook. Measurements and efficient simulation of bowed bars.

Journal of the Acoustical Society of America, 108(1):379–388, July 2000.

[30] B. Feeny, A. Guran, N. Hinrichs, and K. Popp. A historical review on dry

friction and stick-slip phenomena. Appl. Mech. Rev., 51(5), 1998.

[31] N. Fletcher. Nonlinearity, complexity and the sounds of musical instruments.

In 16th International Congress on Acoustics, June 1998.

[32] N. H. Fletcher and T. D. Rossing. The Physics of Musical Instruments, Second

Edition. Springer Verlag, New York, 1998.



190 BIBLIOGRAPHY

[33] F. Fontana. Physics-Based Models for the Acoustic Representation of Space in

Virtual Environments. PhD thesis, University of Verona, 2002.

[34] F. G. Friedlander. On the oscillations of the bowed string. Proc. Cambridge

Philosophy Society, 49:516–530, 1953.

[35] G. Galilei. Dialogues. University of California Press, 1967. Reprinted and

translated by Drake.

[36] C.S. Gillmor. Charles Augustin Coulomb: Physics and Engineering in Eighteen

century France. Princeton, N.J., 1971.

[37] K. Guettler. Personal communications, SMAC 2003.

[38] K. Guettler. The bowed string computer simulated — some characteristic fea-

tures of the attack. Catgut Acoustical Society Journ., 2(2):22–26, Nov 1992.

Series II.

[39] K. Guettler. The bowed string. On the development of the Helmholtz motion and

on the Creations of Anomalous Low Frequencies. PhD thesis, Royal Institute

of Technology, 2002.

[40] K. Guettler and A. Askenfelt. On the kinematics of spiccato and ricochet

bowing. Catgut Acoustical Society Journal, 3(6):9–15, Nov. 1998. (Series II).

[41] D.A. Haessig and B. Friedland. On the modeling and simulation of friction. In

Transactions of the ASME, 1991.

[42] V. Hayward and B. Armstrong. A new computational model of friction ap-

plied to haptic rendering. In P. Corke and J. Trevelyan, editors, Experimental

Robotics VI, pages 403–412. Springer-Verlag, 2000.

[43] V. Hayward and B. Armstrong. A new computational model of friction applied

to haptic rendering. In Experimental Robotics, pages 404–412. Springer NY,

2000.



BIBLIOGRAPHY 191

[44] L. Hiller and P. Ruiz. Synthesizing musical sounds by solving the wave equation

for vibrating objects. Part I. Journal of the Audio Engineering Society, 19(6),

June 1971. Part II: vol. 19, no. 7, July/Aug. 1971.

[45] M. Holm. From real to virtual violin. the process in development of an artificial

model of violin. In 5th National Symposium on Music Research., 2001.

[46] P. Huang, S. Serafin, and J. O. Smith III. Modeling High-Frequency Modes

of Complex Resonators Using a Waveguide Mesh. In Proceedings of the COST

G-6 Conference on Digital Audio Effects (DAFX-00), Verona, Italy, December

7-9 2000.

[47] P. Huang, S. Serafin, and J. O. Smith III. A waveguide mesh model of high-

frequency violin mode resonances. In International Computer Music Confer-

ence, Berlin. Computer Music Association, 2000.

[48] A. Hunt, M. Wanderley, and M. Paradis. The importance of parameter mapping

in electronic instrument design. Journal of New Music Research, 3(2), June

2003.

[49] C.M. Hutchins. Tonal effects of interactions between the two lowest cavity

modes and three body modes of violin. In Stockholm Musical Acoustics Con-

ference (SMAC-93), pages 373–378, Stockholm, August 1993. Royal Swedish

Academy of Music.

[50] J. O. Smith III. Music applications of digital waveguides. Technical Report

STAN-M-39, CCRMA, 1987.

[51] J. O. Smith III. Music applications of digital waveguides. Technical Report

STAN–M–39, CCRMA, Music , Stanford University, 1987.

[52] J. O. Smith III. Nonlinear commuted synthesis of bowed strings. In Proc. ICMC

97, Greece. Computer Music Association, 1997.

[53] J. O. Smith III and J. S. Abel. Bark and ERB bilinear transforms. IEEE Trans.

Speech and Audio Processing, pages 697–708, November 1999.



192 BIBLIOGRAPHY

[54] O. Inacio, L. Henrique, and J. Antunes. Dynamical analysis of bowed bars. In

ICSV8, Hong-Kong, July 2001.

[55] E. Jansson. Acoustics for violin and guitar makers. Technical Report 3, KTH,

2002.
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