/////////////////////////////////////////////////////////////////////////////////////////////////// #define WHOLE_NOTE 3212537328000 /* The definition of the CHRONON: There are 3212537328000 chronons in a whole note. Its computed as the product of the following numbers: 128 3 5 7 9 11 13 17 19 23 25 = 3212537328000 This, for example, allows for an eighth note to be divided into a 21-tupple that will have a length of exactly 19122246000 chronons. The fact that we are guaranteed that all defined* note lengths have exact integer representations in chronons allows us to write fast and effective algorithms for the the computation of combinations of note length values. *Actually, the note lenghts defined are those that can be derived as products of these numbers: 3 5 7 9 11 13 17 19 23 25, and the factors of 128 (with some limitations as to number of terms) The NoteLen object includes a CHRONON data member that specifies the lenght of that object though this length is derived fromt that objects notation data. //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - We adopt the following conventions regarding meter In simple meters the count is the number of beats in the measure. In compound meters the count / 3 is the number of beats in the measure. A meter is compound if it is evenly divisible by n * 3 where n > 1. If the count of a meter is exactly 3 then it may be either triple simple or single compound. A meter is complex if the count > 3 and odd. In this case the meter is decomposed into sub meters: A complex meter may not be or contain as a decomposition factor a compound meter. Beats are combined in groups and supper groups beat Super Groups beat Groups 1:4 monadic simple 1 & 1 2:4 duple simple 1 & 2 & 2 4:4 quad simple 1 & 2 & 3 & 4 & 2,2 8:4 octal simple 1 & 2 & 3 & 4 & 4,4 2,2,2,2 6:8 duple compound 1 & a 2 & a 2 9:8 triple compound 1 & a 2 & a 3 & a 3 12:8 quad compound 1 & a 2 & a 3 & a 4 & a 2,2 3:4 triple simple 1 & 2 & 3 & 3 3:4 monadic compound 1 & a 1 5:4 = 2:4 + 3:4 2,3 5:4 = 3:4 + 2:4 3,2 7:4 = 3:4 + 4:4 3,4 3,2,2 = 4:4 + 3:4 4,3 2,2,3 11:4 = 7:4 + 4:4 3:4 + 4:4 + 4:4 3,4,4 3,2,2,2,2 4:4 + 3:4 + 4:4 4,3,4 2,2,3,2,2 = 4:4 + 7:4 4:4 + 4:4 + 3:4 4,4,3 2,2,2,2,3 13:4 = 7:4 + 6:4 mixed simple and compound decompositions not allowed = 6:4 + 7:4 mixed simple and compound decompositions not allowed = 7:4 + 3:4 + 3:4 3:4 + 4:4 + 3:4 + 3:4 3,4,3,3 3,2,2,3,3 4:4 + 3:4 + 3:4 + 3:4 4,3,3,3 2,2,3,3,3 //- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - some tupple groups and thier spaning denomination-- 3/8:4 is a quater note 3/2: 1 3/4: 2 5/4: 1 7/4: 1 3/8: 4 5/8: 2 7/8: 2 9/8: 1 11/8: 1 13/8: 1 15/8: 1 ( 17 19 23 25 ) 3/16:8 5/16:4 7/16:4 9/16:2 11/16:2 13/16:2 15/16:2 17/16:1 (19 23 25 ) 3/32:16 5/32:8 7/32:8 9/32:4 tuppelets may not be doubly dotted. */ ///////////////////////////////////////////////////////////////////////////////////////////////////