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Abstract

The main issue of this work is to develop a theory of current and shot noise through

nanoscale systems like molecules or quantum dots. Our approach follows a microscopic

many-body description of the transport and relies on a diagrammatic technique on the

Keldysh contour. The transport properties are expressed in terms of irreducible self-

energy diagrams which are expanded order by order in the coupling of the nanoscale

system to the electrodes. Our expressions derived in a first/second order expansion

allow for a description of sequential/co-tunneling current and shot noise. We find

non-Markovian memory effects to play a role for co-tunneling shot noise in the finite

bias regime. Such effects have not been included in previous theories. We explicitly

apply our theory to an experiment on a specific molecule and find that for a realis-

tic description of transport through molecular devices a theory describing a complex

energy spectrum, two-particle interaction effects and an intermediate coupling regime

(co-tunneling) is necessary. We show that our theory can handle these demands. By

studying single and multi-level systems in the sequential and co-tunneling regime we

identify fundamental mechanisms leading to characteristic behavior of the shot noise.

We explain in detail how to extract relevant information from transport measurements

in order to spectroscopically characterize molecular devices or quantum dot structures.

Zusammenfassung

Ziel dieser Arbeit ist es, eine Theorie des Stromes und des Schrotrauschens bereit-

zustellen, welche den Transport durch nanoskalige Systeme wie Moleküle oder Quanten-

punkte beschreibt. Unsere Theorie folgt einer mikroskopischen Vielteilchen-Beschrei-

bung und basiert auf einer diagrammatischen Technik auf der Keldysh-Kontur. Trans-

porteigenschaften werden durch irreduzible Selbstenergiediagramme ausgedrückt, die

ihrerseits Ordnung für Ordnung in der Kopplung des nanoskaligen Systems zu den Elek-

troden entwickelt werden. Unsere Formeln, welche bis zu erster bzw. zweiter Ordnung

entwickelt werden, ermöglichen eine Beschreibung des sequentiellen bzw. Kotunnel-

Stromes und des Schrotrauschens. Unsere Theorie zeigt, dass nicht-Markovsche ’Memo-

ry-Effekte’ für das Kotunnel-Schrotrauschen bei endlicher Spannung relevant sind.

Solche Effekte wurden in früheren Theorien nicht berücksichtigt. Wir wenden un-

sere Theorie auf ein spezielles Molekülexperiment an, und zeigen, dass eine realistische

Beschreibung des Transportes durch Moleküle nur möglich ist, wenn ein komplexes

Energiespektrum, Wechselwirkungseffekte sowie ein mittelstarker Kopplungsbereich

(Kotunneln) theoretisch beschrieben werden. Unsere Theorie wird diesen Ansprüchen

gerecht. Indem wir Systeme mit einem bzw. mehreren Energieniveaus untersuchen,

identifizieren wir Transportmechanismen, die zu charakteristischem Verhalten des

Schrotrauschens führen. Es wird im Detail erklärt, wie relevante Informationen aus

Transportmessungen gewonnen werden können, um Moleküle und Quantenpunkte spek-

troskopisch zu charakterisieren.





Deutsche Zusammenfassung

Derzeit haben Bauelemente handelsüblicher integrierter Schaltkreise typische Abmess-

ungen von etwa 100 Nanometern. Unter der Annahme, dass die Geschwindigkeit, mit

der die Miniaturisierung von Bauelementen voranschreitet, auch in Zukunft beibehalten

werden kann, werden in ca. 12 Jahren Abmessungen von nur noch 10 Nanometern

erreicht sein. Bei solch kleinen Skalen beginnen Quanteneffekte zunehmends wichtig

zu werden, weshalb herkömmliche, auf der Silizium Halbleitertechnologie basierende

Konzepte, durch völlig neue Konzepte ersetzt werden müssen.

Zu den vielversprechenden möglichen Konzepten zählen Quantencomputer, Spinelek-

tronik oder quanten zelluläre Automaten, welche z.B. unter Verwendung von Quan-

tenpunkten realisiert werden können. Quantenpunkte können durch lithographisch

definierte Regionen in einem zwei-dimensionalen Elektronengas (2DEG) einer Halblei-

terheterostruktur (laterale Quantenpunkte) oder durch geschichtete Halbleiterstruk-

turen kleiner Abmessung (vertikale Quantenpunkte) hergestellt werden.

Das Forschungsgebiet der molekularen Elektronik beschäftigt sich mit einem wei-

teren interessanten Konzept, welches einzelne Moleküle, Molekülketten oder Molekül-

cluster als Bestandteile aktiver elektronischer Bauelemente vorsieht. Das Potenzial der

molekularen Elektronik liegt in der Vielzahl von chemisch realisierbaren Molekülen,

welche nahezu unbegrenzte Möglichkeiten zum technologischen Design elektronischer

Bauteile anbieten.

Um Transistoren in der Grösse von wenigen Nanometern herstellen und zudem kon-

trollieren zu können, müssen allerdings die auftretenden Quanten-Effekte grundlegend

verstanden sein. Besonders für Moleküle stellt die kaum verstandene Kopplung

der vergleichsweise grossen metallischen Elektroden an ein Nanometer grosses Ob-

jekt, mit einer möglicherweise komplexen elektronischen Struktur, ein enormes Pro-

blem dar. Diese unterschiedlichen Komponenten wechselwirken auf komplizierte Art

und Weise miteinander, so dass Abschirmungseffekte, dielektrische Effekte, Vibratio-

nen, Relaxations-Effekte über elektromagnetische Strahlung, etc. von Bedeutung sein

könnten. Eine solch grosse Anzahl von ’Freiheitsgraden’ führt zu nahezu unkontrol-

lierbaren Molekül-Elektroden Kopplungsparametern, ganz im Gegensatz zu den Quan-

tenpunkten, für die die Kopplungsparameter in der Regel gut kontrollierbar sind. Es

ist daher leicht einzusehen, dass Molekülmessungen in Experimenten nur mit Hilfe

geeigneter theoretischer Werkzeuge verlässlich interpretiert werden können.

Ziel dieser Arbeit ist es daher, eine Transporttheorie durch nanoskalige Sys-

teme wie Moleküle oder Quantenpunkte bereitzustellen, welche Zugang zu In-

formationen über transportbestimmende Parameter wie Energiespektren,

Wechselwirkungen oder Kopplungen erlaubt.



Zum Zwecke experimenteller Studien dieser Systeme werden in der Regel Strom-

Spannungs Kennlinien I(Vb) und deren Ableitung nach der Spannung Vb, der

Leitwert G(Vb) = ∂I(Vb)/∂Vb, betrachtet. Anhand eines Vergleiches unserer Theo-

rie mit einem konkreten Experiment mit einem Terphenylmolekül zeigen wir, dass

der Strom nur begrenzte Information über die Parameter, an denen wir interessiert

sind, liefern kann. Ein Fit der theoretischen Kurven an die experimentellen Daten

zeigt, dass zur realistischen Beschreibung des Transportes durch Moleküle ein kom-

plexes Energiespektrum, eine starke Coulomb Wechselwirkung U sowie ein mittel-

starker Kopplungsbereich gegeben sein müssen (mittelstarke Kopplung definiert eine

Kopplungsstärke, die nicht klein gegenüber anderen Energieparametern des Systemes

oder der Temperatur T ist). Neben diesen qualitativen Aussagen lassen sich allerdings

keine klaren quantitativen Aussagen machen (z.B. über Asymmetrie der Kopplungen),

was verdeutlicht, dass zusätzliche ’spektroskopische’ Information nötig ist, um Fragen

über den Transport durch mesoskopische Systeme eindeutig zu beantworten.

Zusätzliche Information liesse sich aus dem Strom gewinnen, würde man in Molekülex-

perimenten neben den beiden Kontaktelektroden darüberhinaus eine dritte (Gate-)

Elektrode anbringen. Dies hat sich jedoch als schwierig erwiesen und kann nur in

wenigen Experimenten realisiert werden. Ein vielversprechender Kandidat für ein

’spektroskopisches’ Werkzeug ist das Schrotrauschen S(Vb), welches eng mit der

Strom-Strom Korrelationsfunktion zusammenhängt. Während der Strom nur Infor-

mation über die mittlere Wahrscheinlichkeit des Elektronentransfers durch die Sys-

teme beinhaltet, gibt das Schrotrauschen zusätzlichen Aufschluss über die Dynamik

der Elektrontransferprozesse. Natürlich würden höhere Korrelationsfunktionen als der

zweite Stromkorrelator das Verständnis des Elektronentransportes weiter vervollständi-

gen. Diese sind aber experimentell schwierig zu messen und die theoretischen Zugänge

(z.B. Full Counting Statistics) sind immer noch auf die einfachsten Modellsysteme

beschränkt. Eine Theorie des Schrotrauschens ist daher den obengenannten Alterna-

tiven derzeit vorzuziehen. Schrotrauschen resultiert aus der Quantisierung der Elektro-

nenladung und führt zu zeitabhängigen Fluktuationen des Stromes, welche insbeson-

ders in nanoskaligen elektronischen Schaltkreisen stark auftreten, da nur wenige Elek-

tronen am Transport beteiligt sind. Es zeigt sich, dass besonders Elektron-Elektron-

Wechselwirkungen zu starken Korrelationen in dem System führen können und das

Verhalten des Schrotrauschens charakteristisch beeinflussen. Schrotrauschen zeigt sich

daher empfindlich gegenüber zwei Energieskalen: der elektronischen Struktur des Sys-

tems, die Elektron-Elektron Wechselwirkung inbegriffen, und der Kopplungsenergie des

Systems an die Elektroden. Dies sind aber genau die Energieparameter, welche wir als

wichtige, den Transport bestimmende Parameter identifiziert haben.

Derzeit gibt es keinen theoretischen Zugang zum Schrotrauschen, welcher alle diese

Parameter exakt beschreibt. Bislang beschränkt man sich entweder auf starke oder

schwache Kopplungssituationen zwischen Molekülen und Elektroden.



Für den Fall starker Kopplung wird der Transport durch die Kontaktregionen do-

miniert und das Molekül oder der Quantenpunkt verhalten sich wie ein Streuzen-

trum, an dem kohärente Quentenzustände gestreut werden. Ein theoretischer Zu-

gang, welcher alle Transporteigenschaften einer Streumatrix zuordnet, ist durch die

Landauer-Büttiker Theorie gegeben. Diese Theorie ist in Situationen des ballistischen

Transportes, in welchen Wechselwirkungseffekte vernachlässigbar sind, gut anwendbar.

Physikalisch interessanter ist der Fall schwacher Kopplung, da die Elektronen im

Transport eine lange Zeit auf dem Molekül verbringen und Wechselwirkungseffekte da-

her relevant oder gar dominant sein werden. Der Transport wird in diesem Fall durch

eine Sequenz inkohärenter Hüpfprozesse (sequentielles Tunneln) zwischen Molekül

(bzw. Quantenpunkt) und Elektroden beschrieben. Dieser Einzelelektronen-Transport,

bekannt als ’orthodoxe Theorie’, wird theoretisch durch eine Störungsentwicklung in er-

ster Ordnung in der Kopplung beschrieben und ist gültig, solange die Kopplung klein

gegenüber der Temperatur ist. Das Bild des sequentiellen Transportes muss jedoch

im Coulomb-Blockadebereich (ein Bereich in dem die Spannung klein gegenüber der

Energie ist, welche das System benötigt um be/entladen zu werden) erweitert wer-

den, da der Transport hier exponentiell unterdrückt ist. Kotunnelprozesse, welche

durch eine Störungsentwicklung zur zweiten Ordnung in der Kopplung beschrieben

werden, dominieren in diesem Fall, selbst bei (algebraisch) schwacher Kopplung. Sie

ermöglichen das Tunneln mittels virtueller Zwischenprozesse durch das System ohne

den Ladungszustand zu ändern. Eine Transportbeschreibung durch eine Theorie erster

Ordnung kann aber auch bei grossen Spannungen zusammenbrechen, falls die Stärke

der sequentiellen Tunnelprozesse unter die der Kotunnelprozesse unterdrückt ist, was

z.B. bei stark asymmetrischen Kopplungsparametern möglich ist. Kotunnelprozesse

sind also wichtig, um das Bild des sequentiellen Transportes für den gesamten Span-

nungsbereich konsistent zu erweitern, und natürlich notwendig um einen mittelstarken

Kopplungsbereich (in dem Wechselwirkungseffekte noch relevant sind) zu beschreiben.

Ein wichtiges Ergebnis der vorliegenden Arbeit ist es daher, eine Theorie des Stromes

und des Schrotrauschens basierend auf einer mikroskopischen Vielteilchen-Beschrei-

bung bereitzustellen, welche eine Beschreibung komplexer Energiespektren, beliebiger

Wechselwirkungseffekte, Spannungen und eines mittelstarken Kopplungsbereiches (Ko-

tunneln) ermöglicht. Unsere Theorie bedient sich einer diagrammatischen Technik

auf der Keldysh-Kontur und erlaubt es alle Transporteigenschaften durch irreduzible

Selbstenergie-Diagramme auszudrücken, welche ihrerseits Ordnung für Ordnung in der

Kopplung des nanoskaligen Systems zu den Elektroden entwickelt werden. Zudem

zeigen wir, dass eine Beschreibung höherer Korrelatoren, sowie frequenzabhängiges

Rauschen und die Berücksichtigung von Kohärenz-Effekten möglich ist, was unseren

theoretischen Zugang auch für zukünftige weitere Anwendungen attraktiv macht. Für

das Schrotrauschen zeigt unsere Theorie, dass nicht-Markovsche Effekte bei Prozess-

en höherer Ordnung (beginnend mit Kotunnelprozessen) den Transport mitbestimmen.



Um den Transport durch Moleküle und Quantenpunkte realistisch zu beschreiben

und zudem die den Transport bestimmenden Parameter verlässlich bestimmen zu

können, wenden wir unsere Theorie des sequentiellen sowie des Kotunnel-Stromes und

Schrotrauschens zunächst auf einfache Modellsysteme an, die uns erlauben, fundamen-

tale Transportmechanismen zu identifizieren, welche auch in komplexeren Systemen

relevant sein werden.

Für eine Analyse der Transporteigenschaften erweist sich das Rausch-zu-Signal-Verhält-

nis F (Vb) = S(Vb)/2eI(Vb), der sogenannte Fano-Faktor als nützlich, da er charak-

teristische Informationen des Schrotrauschens über Korrelationen der Elektronen oft

besser visualisiert. So ergibt sich im Falle unkorrelierter Elektronen (der Transport

wird durch Poissonstatistik beschrieben) ein Fano-Faktor von F = 1. Abweichungen

von diesem Wert ergeben sich, wenn ein sogenanntes ’Anti-Bunching’ oder ’Bunching’

(Bündelung) der Elektronen zu Korrelationen führt, z.B. aufgrund spezieller Kopp-

lungssituationen, Wechselwirkungen, etc. Für den Fano-Faktor ergeben sich dann

sub-Poissonsche (F < 1) oder super-Poissonsche (F > 1) Werte. Im Fall schwacher

Kopplung sind Werte zwischen F = 1/2 (symmetrische Kopplungen an beiden Elek-

troden) und F = 1 (stark asymmetrische Kopplung) typisch, was wir an einem Ex-

periment zum Schrotrauschen an selbsorganisierten InAs Quantenpunkten belegen.

Super-Poissonsche Werte lassen sich in bestimmten Situationen beobachten, wenn

die Symmetrie das Systemes gebrochen ist, z.B. durch asymmetrische Kopplungs-

parameter (für lokalisierte Systeme mit mehreren Energieniveaus oder spinabhängiger

Kopplung) oder durch starke Wechselwirkungseffekte (für delokalisierte Systeme). Dy-

namisches Bunching oder Blockade-Effekte der Elektronen führen in diesen Fällen

zu einem Wettbewerb verschiedener Transportkanäle. Oftmals wird ein negativer

differentieller Leitwert und ein stark unterdrücktes (oder auch verstärktes) Schrot-

rauschen beobachtet. Relaxations- oder Kotunnelprozesse können ein solches Verhalten

in manchen Fällen wieder zerstören.

Wir besprechen detailliert, wie Information über Energieniveaus, Kopplungsparame-

ter, Stärke von Wechselwirkungen, magnetische Felder, Temperatur, etc. in sequen-

tiellen bzw. durch Kotunneln dominierten Spannungsbereichen (sowie Bereichen, in

welchen beide gleich wichtig sind) aus der kombinierten Betrachtung des Stromes,

des Schrotrauschens sowie des Fano-Faktors gewonnen werden kann. Nur eine un-

abhängige Untersuchung des Einflusses verschiedenster Effekte kann im Falle ihres

Zusammenspieles helfen, die physikalischen Vorgänge in solch komplexen Systemen wie

Molekülen zu verstehen. Theoretische Vorhersagen über charakteristisches Verhalten

des Schrotrauschens könnten anhand der bekannten Kopplungsparameter bei Exper-

imenten mit Quantenpunkten überprüft werden, um in Experimenten mit Molekülen

als spektroskopisches Werkzeug zu dienen und unbekannte Parameter möglicherweise

selbst-konsistent zu bestimmen. Dies könnte zukünftig eine Kontrolle und Design

molekularer Schaltkreise ermöglichen.
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3

1 Introduction

Commercially manufactured integrated circuits have currently typical feature dimen-

sions of about 100 nanometers. Assuming that the current rate of miniaturization con-

tinues in the future, circuit feature dimensions of only 10 nanometers will be reached

in about 12 years. At these nanoscale dimensions quantum effects will become in-

creasingly important and current circuit designs will run into fundamental difficulties.

Present day device designs will therefore have to be replaced by entirely new concepts.

There are several nanoscale concepts which could take over from here.

Concepts like quantum computing, spintronics or quantum cellular automata can be

realized e.g. by the use of quantum dots (QDs) [1, 2]. QDs can be formed by

lithographically defined regions in a two-dimensional electron gas (2DEG) of a semi-

conductor heterostructure (lateral QDs) or in layered semiconductor structures with

small diameter (vertical QDs).

Molecular electronics is another promising concept. Here, single molecules, chains

or clusters of molecules are supposed to act as wires and active electronic devices [3, 4].

The research field of molecular electronics has rapidly advanced in recent years as

nanofabrication techniques have made it possible to manipulate and explore the elec-

tronic transport through individual atoms and molecules. The potential in molecular

electronics lies in the huge variety of available molecules that allows one to design an

almost unlimited number of distinct molecular electronic devices.

These concepts provide interesting fields for experimental and theoretical investigation

with a potential of a rich variety of applications. However, the realization and control

of nanosize transistors demands a fundamental understanding of the numerous new

physical effects in these systems. In particular, for molecular devices a major problem

consists in the poorly understood coupling of a nanosize ’island’ (with a possibly com-

plex electronic structure) to the metallic reservoirs of much larger cross section that

form the source and drain electrodes of the device. The various device components

interact with each other in a complex way which may give rise e.g. to field effects,

screening, dielectric effects, vibrations, electro-mechanical effects or relaxation effects

via electromagnetic radiation. This results in more ’degrees of freedom’ in the molec-

ular devices in contrast to the typically better defined quantum dots. Whereas the

coupling parameters of quantum dots can be tuned very well, we have to deal with

almost uncontrollable molecule-electrode couplings. However, devices involving many

degrees of freedom provide also more possibilities for technological designs, which is

an important reason for the particular interest in molecular electronics. The complex-

ity of the coupled molecule-electrode system reflects directly on the difficulties in the

interpretation of experiments. Therefore reliable theoretical tools are needed to guide

experimental observations.



4 CHAPTER 1. INTRODUCTION

To characterize the transport through molecules and quantum dots one usually studies

the current-voltage characteristics I(Vb) and its derivative with respect to the

bias voltage Vb, the conductance G(Vb) = ∂I(Vb)/∂Vb. However, the current provides

information only about certain combinations of the molecule-electrode coupling pa-

rameters as one basically measures a series of resistors. No definite predictions can

be made about asymmetries of the coupling parameters, number of relevant trans-

port channels, etc. by the consideration of the current alone. This is illustrated in

chapter 2.2.2 where we apply our theory to a specific experiment on a terphenyl-

type molecule. A comparison of experimentally measured and theoretically fitted cur-

rent and conductance curves shows that more than one transport channel, a finite

Coulomb-interaction U and an intermediate coupling regime (’intermediate cou-

pling’ means a coupling that is not small compared to other energy parameters of the

system or the finite temperature T ) are necessary to consistently explain the experi-

mental data. While this qualitative information is important, quantitative predictions,

especially about asymmetries of the coupling parameters, are difficult. This leads us

to the conclusion that more detailed answers to the questions in mesoscopic transport

can be given only if additional ’spectroscopic’ tools are available.

More information could be gained from the current alone, if instead of a two-terminal

measurement (only source and drain electrodes) via inclusion of a gate electrode a

three-terminal measurement were realized. However, contacting a molecule with a gate

electrode is very difficult and can be realized only in a limited variety of experimental

setups. A promising candidate to serve as a further spectroscopic tool is the shot

noise S(Vb) which is intimately related to the current-current correlation function [5].

Whereas the current contains information on the average probability for the transmis-

sion of electrons through the device, the shot noise provides additional information on

the dynamics of the electron transfer process. Of course, higher correlators than the

second current correlator would further complete a picture of transport, but are very

difficult to measure in experiment, and present theories to compute the higher current

correlators (e.g. full counting statistics) are still restricted to the simplest model sys-

tems (a small number of system states). In chapter 3.7 we show that our theory can

describe higher correlators while addressing more complex systems. However, the shot

noise is much easier accessible both theoretically and experimentally (although still far

from trivial). Shot noise is due to the discreteness of the electron charge that leads to

time-dependent fluctuations in the measured current. Such statistical fluctuations show

up much stronger in the nanosize electronic devices compared to macroscopic classical

devices due to the ’small’ number of electrons participating in transport. Interaction

effects (like the Coulomb-interaction between electrons) may lead to strong correlations

in the system resulting in characteristic features in the shot noise. Shot noise therefore

turns out to be sensitive to two classes of energy scales: the system inherent electronic

structure, including the electron-electron interaction, and the coupling strength(s) of
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the system to the electrodes. These are exactly the energy parameters that we know to

be of fundamental importance to the transport. Depending on the applied bias voltage,

they determine if and how transport can occur.

Often the Fano factor, being the noise to current ratio (F (Vb) = S(Vb)/2eI(Vb)),

turns out to provide a better access to the information contained in the noise. We con-

sider this special combination of current and shot noise as it allows easy extraction of

information about electron correlations in the system. For uncorrelated, independent

transport a Fano factor with a value F = 1 can be found, as the transport is described

by Poissonian statistics. Deviations from F = 1 due to anti-bunching or bunching of

electrons are then due to correlations arising from special coupling situations, interac-

tion effects, etc. and lead to a sub- (F < 1) or super-Poissonain (F > 1) behavior of

the Fano factor. Most of our discussion in chapter 4 is concerned with the identifi-

cation of the fundamental mechanisms leading to such correlated transport behavior.

Indeed, the combined study of current, shot noise and Fano factor provides the deep-

est insights into the mesoscopic transport properties. A side-by-side comparison of all

quantities in the various bias regimes does allow for a considerable increase of knowl-

edge about transport parameters, possibly even for a self-consistent determination of

these parameters.

In the case of controllable quantum dot structures, the investigation of shot noise may

serve as a playground to study transport physics. The easily determined parameters

allow us to focus on fundamental transport mechanisms and to test the predictions

made from theory. In chapter 2.2.1 we compare with shot noise measurements on

self-assembled InAs quantum dots. Such knowledge is the feedback experimentalists

need to achieve better control and design reliable technological devices.

The experimental challenge to measure shot noise consists of the elimination of other

sources of noise, such as low frequency 1/f -noise or random telegraph noise (RTN).

These kinds of noise originate from fluctuations of the charge carriers in the environ-

ment (e.g. the metallic electrodes). This is different to the fluctuations of the carriers

crossing the nanoscopic system itself. Thus only the shot noise carries the information

about system inherent properties (electronic structure, energy barriers, etc.). A dis-

tinguishing feature of the shot noise is its frequency independence (white noise) over

a wide region, in contrast to the other kinds of noise mentioned above, which vanish

for sufficiently large frequencies. For quantum dots 1/f -noise has vanished typically

at frequencies above 100kHz, whereas for molecules frequencies of several MHz are

certainly needed to sufficiently suppress 1/f -type noise.

Having elucidated the relevance of current and shot noise measurements to characterize

technologically interesting quantum dot systems and molecular devices, the question

for an appropriate theoretical description arises. Up to date there is no technique

available that is able to describe shot noise through complex electronic structures, while
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taking into account two-particle interaction effects and arbitrarily strong coupling to

an environment as would be crucial to fully describe the systems we are interested

in. Available theories focus on either a strong or a weak coupling situation between

molecule and electrodes.

In the case of a strong coupling to the reservoirs, electrons tunneling through the

device will spend much more time in the large reservoirs compared to the nanoscale

object in between. The transport in this regime is dominated by the contact and hap-

pens via scattering states that are coherent quantum states over the entire system. The

molecule or quantum dot acts like a scatterer, similar to a metallic constriction, where

interaction effects are less important. This reflects a situation of ballistic transport,

where the so called Landauer-Büttiker approach (relating all transport properties to

the scattering matrix) can be applied. Theories like density functional theory (DFT),

Hartree-Fock or mean field approaches are typically used to describe the conductance,

current and noise in an effectively non-interacting system.

A physically and technologically more interesting situation is the weak coupling

regime. Since electrons tunneling through the devices will spend a lot of time on the

molecule, interaction effects are relevant and sometimes dominant. This is the regime

where single-electron tunneling is observed, as the charging energy EC = e2/2C (being

the relevant energy-scale for charging effects) is relatively high compared to the cou-

pling energy Γ. For quantum dots typical capacitances are in the range of C = 10−15F

(EC ∼ 10−4eV) corresponding to a temperature of EC/kB ∼ 1K. For molecules ca-

pacitances of about C = 10−18F (EC ∼ 0.1eV) should make single-electron tunneling

observable even at room temperature. The transport in this regime is described as

a sequence of incoherent hops of single-electrons on and off the molecule or quantum

dot. These kinds of processes are called sequential tunneling processes and are de-

scribed theoretically by a first order perturbation expansion in the coupling strength

Γ, equivalent to a golden rule approximation. The ‘orthodox‘ theory describing such

a sequential tunneling based transport is valid, if the coupling Γ between island and

electrodes is much smaller compared to the temperature (Γ << kBT ).

However, there are situations where this picture of transport breaks down, as in the

case of the Coulomb-blockade, where single-electron tunneling is suppressed and co-

herent co-tunneling processes become dominant. Such processes are described by a

second order perturbation expansion in the coupling Γ. The Coulomb blockade defines

a regime where the bias voltage is small compared to the charging energy, leading

to exponentially suppressed transport since a charging and un-charging of the system

via sequential tunneling processes is only possible after thermal activation of excited

states. However, processes allowing for tunneling through the island via an interme-

diate virtual state without changing the island charge are possible without thermal

excitation. A first order description may also fail in the finite transport regime (at

larger bias) whenever sequential tunneling processes are suppressed below co-tunneling
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processes, e.g. due to strongly asymmetric couplings. Obviously higher order tunneling

processes (described by higher than first order expansions in Γ) need to be included

when stronger (intermediate) coupling situations are present in experiment. Therefore,

for current and shot noise in molecules and quantum dots the need for a valid theory in

such an intermediate coupling regime is twofold. 1) In experiments with molecules

the extreme situations of weak or strong coupling are not necessarily realized. An in-

termediate situation is more likely to be present in general, where however a correct

treatment of interaction effects is still required. An adequate theoretical description

allowing for an understanding of the physically relevant transport mechanisms is thus

given only, if higher than first order tunneling processes are considered. 2) For experi-

ments with molecules or quantum dots co-tunneling effects are important whenever the

sequential tunneling picture fails, which may happen even in an assumed small cou-

pling situation (Coulomb-blockade or blocked transport due to asymmetric coupling).

Then, only the combination of lowest and higher order transport processes provide a

complete picture.

The aim of this thesis is therefore to provide a theory of transport of interacting elec-

trons which allows to push to an intermediate coupling regime by taking into account

co-tunneling processes. This will allow for a study of co-tunneling current and

shot noise in molecules and quantum dots.

The thesis is partly based on previous and forthcoming publications [6, 7, 8, 9, 10, 11,

12, 13] and is organized as follows: In chapter 2 we give a more detailed introduction

to shot noise in nanoscopic systems like molecules or quantum dots. We discuss different

sources of noise and how they differ from shot noise, which allows for their elimination

in experiment. We discuss in detail why especially the shot noise is the relevant tool

to analyze transport. Basic features of the noise and the Fano factor are discussed

in order to prepare the reader for the discussion of our results presented later in this

work. Two particular current or shot noise measurements are considered in detail,

to show the applicability of our theory and relate to experimental observations. The

comparison of our theory to a specific current measurement on a molecule emphasizes

the incomplete information about transport properties and stresses the need of further

spectroscopic tools like shot noise.

Our theory to describe current and shot noise in nanoscopic systems is presented in

chapter 3. We provide an overview over various approaches and their physical lim-

itations, and contrast a regime of strong electrode-molecule (electrode-quantum dot)

coupling with the opposite weak coupling regime. The development of a theory for

current and shot noise, being able to describe also an intermediate coupling regime

(by taking into account higher order co-tunneling processes) is the main theoretical

achievement of the present work [9, 10]. Our theoretical approach relies in a diagram-

matic technique formulated on the Keldysh contour which enables a description of all

transport properties in terms of transition rates which we expand order by order in
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the coupling strength. Tools which are needed for the calculations are discussed in

the appendices A,B and C, which reduces the technical discussion in this chapter. We

relate the current and shot noise to so called irreducible blocks (self-energies, transition

rates), which can be calculated in a straightforward way. The range of validity of our

theory and several extensions to address frequency dependent noise, coherence effects

or higher order current correlators are discussed at the end of this chapter.

In chapter 4 we discuss results for single [6] as well as multi-level systems (taking into

account relaxation effects) [7, 8] in the sequential (first order in the coupling strength)

and the co-tunneling regime (second order) [9]. Since our theory is applicable to a

large variety of systems we can also describe spin-dependent transport relevant

for spintronics by considering magnetically polarized leads [10, 11]. We summarize

the main features of first order transport and explain the physical mechanisms that

lead to interesting transport behavior, which will be relevant also in more complex

systems. Together with the co-tunneling transport picture, we show that a complete

understanding of current, shot noise and Fano factor in the entire bias regime is possible

now. The chapter closes with an outlook towards a description of transport through

real molecular devices [12, 13].

Finally, in chapter 5 we summarize again the main ideas and results of the thesis and

discuss possible future projects, both from an experimental and a theoretical point of

view.

Special tools, formulas, etc. that are not needed to understand the general ideas and

results of this work are presented in the appendices A,B,C. They are only relevant

to those readers, who want to apply the diagrammatic technique presented in chapter

3.

Depending on the interests and demands of the reader, it is thus possible to read any

single chapter of this work by itself.
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2 Motivation

Noise is an unavoidable quantity inherent in every measurement. Experimentalists nor-

mally want to reduce the noise as much as possible. It is due to statistical fluctuations

in electronic devices. Depending on the system (size, material, geometry, etc.) and

the conditions under which it is observed (temperature, bias voltage, frequency, etc.)

different types of noise can occur. In this chapter we want to show, that noise does not

necessarily have a disturbing presence but can also be used to obtain additional infor-

mation about fundamental system parameters. In particular this is the case for the

shot noise. Other sources of noise have to be filtered out before the shot noise we are

interested in can be studied. We therefore have to know the properties of these sources

and the conditions under which they are absent in nanoscale systems like molecules or

quantum dots. We thus begin with a brief discussion of such noise sources. Then we

introduce the classical shot noise as discovered by Walter Schottky in an ideal vacuum

tube. Basic properties are studied in order to prepare the reader for the discussions

of our results in chapter 4. For this purpose the shot noise in mesoscopic systems and

the importance, but also difficulties of finite interaction effects are discussed in some

detail. In the second part of this chapter experiments on quantum dot structures and

molecules as far as they exist are discussed. This will show, that a comparison between

theoretical predictions and experimental results is possible and indeed additional in-

formation can be extracted by the consideration of the shot noise. Some arguments,

why we are interested in a description of an intermediate coupling regime will be given

as well, and are further deepened in the next chapter.

2.1 Shot noise: basic properties

In electrical conductors in general many sources contribute to the noise. We want

to discuss the four most important ones that experimentalists are confronted with:

generation-recombination noise relevant in semiconductors, 1/f or modulation noise,

thermal or Johnson-Nyquist noise and shot or non-equilibrium noise. The origin and

possible elimination of the first two of them is discussed in the following, whereas the

last ones are not separable and thus will be discussed together afterwards. The main

properties of shot noise in non-interacting systems are studied, leading to a discussion of

universal behavior in some systems, which however is absent for interacting conductors.

This makes the shot noise to an interesting spectroscopic tool in interacting mesoscopic

systems that allows us to answer fundamental physical questions.
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2.1.1 Other sources of noise

Generation-recombination noise can be understood by considering a semiconductor

with a number of traps. The continuous trapping and de-trapping of the charge carri-

ers causes a fluctuation in the number of carriers in the conduction and valence bands

(electron-hole pair creation). The time-scale on which these processes occur is char-

acterized by τ (lifetime of electrons in the conduction band). These fluctuations of

stochastical nature show up in a Lorentzian like form of the noise spectral density [14]

S(ω) ∼ τ

1 + ω2τ 2
. (2.1)

Since the generation-recombination noise additionally scales with the number around

which the electrons are fluctuating, this effect will be reduced in smaller semiconductor

devices. In order to eliminate this source of noise in quantum dots (or molecules), it

is sufficient to consider the noise at a certain finite frequency ω. For quantum dots

this is achieved typically at frequencies smaller than 100 kHz (see Ref. [15]) A more

general name for this kind of noise, which is due to the switching of the electron

number between discrete values at random times, is random telegraph noise (RTN).

Other expressions like burst-, bistable- or popcorn-noise have been used as well.

1/f , modulation or flicker noise is a low frequency noise, since a dominant noise in-

crease as an inverse power of the frequency is observed:

S(ω) ∼ 1

ωa
. (2.2)

The exponent is often close to unity (a ∼ 1) which is why this noise is called 1/f -noise.

The origin is due to slow variations of the resistance at constant current, which leads to

slow voltage fluctuations. A possible explanation could be that the conductance jumps

between two or more locally stable values, which could be due to either the motion of a

scatterer between two locally stable positions or to the ionization and deionization of an

impurity (e.g., a donor or acceptor in a semiconducting system). 1/f noise then follows

if many such activated centers exist [16]. However, this kind of noise has been found in

a huge variety of systems with obviously different physical origin. An established theory

which explains this phenomenon in general thus still does not exist. Again, because of

the special kind of frequency dependence (very different from white noise), 1/f noise

can be eliminated since it vanishes at higher frequencies (it exists to higher frequencies

than RTN). This allows the extraction of shot noise, which is frequency independent

up to very high frequencies, as we will see in the following. Filtering out the unwanted

sources of noise is easier in experiments with quantum dot structures embedded in

a two-dimensional electron gas compared to the molecules captured between metallic

gold electrodes, as the electrodes define a less stable environment.
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2.1.2 Classical shot noise

Shot noise is a non-equilibrium phenomenon and due to the granularity of the charge.

Compared to the other noise sources it has caused an immense interest and has been

developed into a fast growing subfield of mesoscopic physics (for reviews see Ref. [5, 16,

17]). It can be used to obtain information on a system which is not available through

plain current measurements. In particular, shot noise experiments can determine the

charge and statistics of the quasi-particles relevant for transport, and reveal information

on internal energy scales of mesoscopic systems. A high sensitivity to the effects of

electron-electron interactions or the coupling of the system to the environment makes

the shot noise an interesting spectroscopic tool.

In 1918 shot noise was discovered in a classical device, when Schottky calculated the

noise in an ideal vacuum tube where all sources of spurious noise had been eliminated

[18]. Two types of noise remained, described by him as the Wärmeeffekt and the

Schroteffekt.

The first type of noise became known as Johnson-Nyquist noise (due to the experi-

mentalist and theorist who investigated it), or simply thermal noise. It is frequency

independent (white noise) and due to the thermal fluctuations of occupation numbers

in the reservoirs. At temperatures T 6= 0 thermal noise is always present in any con-

ductor. The thermal motion of particles gives rise to equilibrium current fluctuations

in the external circuit, which are via the fluctuation-dissipation theorem related to the

conductance of the system.

The second type of noise, the shot noise, is caused by the discreteness of the carriers

charge of the electric current and a non-equilibrium (transport) phenomenon. For a

better understanding of what this phenomenon is due to, we consider the simplest ex-

ample, where shot noise can be observed, a single barrier with transmission probability

T . We assume, that we initially have n charge quanta q coming from the left side

of the barrier per unit time τ . The probability distribution pn(nT ) of the number of

particles nT which are transmitted to the right side is then binomial:

pn(nT ) =

(

n

nT

)

T nT (1 − T )n−nT (2.3)

Averaging the binomial distribution gives 〈nT 〉 = nT for the mean value and 〈δn2
T 〉 =

〈n2
T 〉−〈nT 〉2 = 〈nT 〉(1−T ) = nT (1−T ) for the variance, where we used the definition

δnT = nT − 〈nT 〉. These expressions can be directly derived from the characteristic

function [19]. For perfect transmission (when there is no barrier) the variance vanishes.

The current is given by I = qnT /τ and its variance therefore is found to be 〈δI2〉 =

q〈I〉(1−T )/τ . We further simplify this result by assuming, that the particles cross the

barrier independent from each other, which leads to uncorrelated events in time and
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the distribution Eq. 2.3 can be approximated by the Poissonian distribution

p(nT ) = e−λλ
nT

nT !
(2.4)

with λ = nT (n >> 1, T << 1). This describes the regime of low transmission.

If we want to relate the variance of the current to the noise, we will have to make use

of the so called Wiener-Khintchine theorem, which states, that the noise is the Fourier

transform of the autocorrelation function. The finite frequency noise thus takes the

form

S(ω) =

∞
∫

−∞

dteiωt 〈δI(t)δI(0) + δI(0)δI(t)〉 , (2.5)

(with δI(t) = I(t)−〈I〉). We note, that only the time difference t in the current-current

correlation enters.

Since the particles arrive at random times, uncorrelated pulses in the current show up

in terms of a Delta-function. Integrating out Eq. 2.5 then yields S(0) = 2q〈I〉 for the

zero frequency noise. If the charge would not be quantized, shot noise would be absent

since S → 0 for q → 0. In Schottky‘s case, the granularity of the current was the

elementary charge q = e, but this does not always have to be so. Values of q = 2e

in superconductors (due to cooper-pairs) or q = e/(2m+ 1) with an integer m in the

fractional quantum Hall effect have been observed. This shows, that the shot noise

allows to measure the effective charge transferred in electric devices.

Ugo Fano (1947) considered the ratio F = S/2e〈I〉 in order to get a dimensionless

parameter, that takes the value 1 in the case of the vacuum tube, where

S = SPoisson = 2e〈I〉. (2.6)

For the derivation of the Poissonian shot noise, we assumed events to be uncorrelated

in time and hence approximated the binomial distribution Eq. 2.3. In general we find

S = SPoisson(1−T ) and therefore F = (1−T ) for the Fano-factor. Since the current is

proportional to T , we immediately see, that in both cases, T = 0 and T = 1 the shot

noise vanishes, whereas the Fano-factor can have values between 0 (ballistic conductor,

T = 1) and 1 (single tunnel-barrier with T << 1). For T = 1/2 the partition noise,

due to the fact, that the scatterer divides the initial carrier stream into two streams, is

maximal. In Fig. 2.1 an example for a barrier with T = 3/7 is sketched, to illustrate

this partitioning. A number of n (here 7) electrons arrives at a barrier, where a part

is reflected and the rest passes the barrier (nT = 3 in our example). For a large

number of electrons the transmission probability T = 〈nT 〉/n is defined by the average

of transmitted electrons. This classical picture of course fails in the case of only a
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few arriving electrons as in our example. As we will discuss in the following, even

in the regime, where a quantum mechanical treatment becomes relevant, the above

expressions hold for the simple single-barrier example.
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Figure 2.1: Example for the partitioning of an initial carrier stream into two

streams of transmitted and reflected carriers with probabilities T and R = 1−T .

Deviations from F = 1 have been shown to be due to statistical anti-bunching or

bunching which leads to negative or positive correlations [20]. In fermionic systems

usually the Pauli principle correlates the electrons such that anti-bunching effects lead

to sub-Poissonian values of the Fano-factor with F < 1, whereas in bosonic systems

bunching leads to super-Poissonian values with F > 1. However, this statement is

based on a series of assumptions (e.g. zero-impedance external circuits, spin inde-

pendent transport, normal thermal leads). If these conditions are not met, positive

correlations could be found in fermionic systems, for example. Besides the Pauli prin-

ciple, the Coulomb repulsion could be another source of correlations in an electronic

conductor. In a vacuum tube the mean occupation of a state is so small, that the Pauli

principle is inoperative, and for uncorrelated events Coulomb repulsion does not play

any role.

We want to emphasize here that the shot noise in a vacuum tube or a tunnel junction

is a statistical effect and a classical phenomenon, as we have seen by deriving the for-

mula Eq. 2.6, although we have written the statistical averages in brackets (as used for

expectation values in quantum mechanics). Shot noise can be present in any type of

conductor, but may be smeared out, as in macroscopic metallic wires, due to inelastic

scattering of the electrons with the environment. Special interest lies in studying shot

noise in mesoscopic devices, where the granularity in the charge flow can still be ob-

served and may hopefully lead to non-universal behavior of the Fano-factor. Factors of

1/3 (in diffusive wires), 1/4 (in chaotic wires) or 1/2 (in a symmetric double-barrier)

have been observed, among others. Such factors provide only very restricted informa-

tion and thus, changes of this factor in dependence of Temperature, barrier heights,

an applied bias voltage (in transport measurements), etc. would be favorable in order

to characterize the system under investigation as well as possible. Information about

electronic structure, coupling of a system to its environment, etc. may be extracted

from the shot noise, information which is not contained in the current.
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2.1.3 Shot noise in mesoscopic systems

In order to describe the transport properties in mesoscopic systems a quantum me-

chanical treatment of the problem is required [5, 21, 22, 23, 24]. We want to present

and discuss briefly, the well established formulas for current and shot noise which have

been derived within the scattering or Landauer-Büttiker approach [5, 21]. The idea of

this approach is to relate transport properties of the system to its scattering properties,

which are assumed to be known from a quantum mechanical calculation.

iL iR

oL oR

sampleL R

Figure 2.2: Sketch of the scattering problem, where operators iL, iR and oL, oR

describe electrons in the incoming and outgoing states. A mesoscopic conductor

(sample) is connected to the left L and right R reservoirs.

The conductor is considered as a scattering region, connected to electron reservoirs

(left L and right R), which are described by thermally equilibrated electrons. Incoming

states are occupied according to the Fermi-Dirac distribution function and scattered

into outgoing states. For N modes or channels, a 2N ⊗ 2N scattering matrix (because

of two reservoirs) relates these states to each other via:
(

oL

oR

)

= S

(

iL
iR

)

(2.7)

with the unitary matrix

S =

(

rLL tLR

tRL rRR

)

(2.8)

consisting of 4 N ⊗ N blocks. The N ⊗ N blocks defining the scattering matrix are

due to reflection coefficients back into leads L,R or transmission through the sample

(see Fig. 2.2). Since in the presence of time-reversal symmetry the scattering matrix is

symmetric, its transmission coefficients tLR = tRL = t can be related to the current and

shot noise via a matrix t†(E)t(E). It has a real set of eigenvalues Tn(E) interpreted as

transmission probabilities (transverse quantum channels) which in general are energy-

dependent.

For the symmetrized current I = (〈IR〉 − 〈IL〉)/2 the expression

I =
e

2π~

∑

n

∫

dE Tn(E)[fL(E) − fR(E)] (2.9)
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can be found, where the Fermi functions are defined as fr(E) = [e(E−µr)/kbT +1]−1, with

r = L,R. The chemical potentials are mostly chosen in the form eVb/2 = µL = −µR

such that the bias Vb is applied symmetrically. This expression for the current is a

result for a non-interacting system, where the reservoirs have been assumed to be

large compared to the sample size and thus inelastic processes have been neglected.

This assumption is justified in case of ballistic transport, where the sum over the

eigenchannels Tn(E) has to be large in the sense, that either for some n, the Tn(E) have

to be near unity, or for small Tn(E), many channels n exist, such that the conductor

is transparent. For small applied bias in the zero-temperature limit the conductance

can be approximated as

G =
e2

2π~

∑

n

Tn(E). (2.10)

Assuming the transmission probabilities to be energy-independent, Tn(E) = Tn, the

conductance can be related to the current even for larger bias as I = GVb. Eq. 2.10 is

known as the Landauer formula, for the case of many channels.

Taking the definition Eq. 2.5 for the noise, an expression for the zero-frequency shot

noise can be derived as well within a scattering approach. For a non-interacting system

S =
e2

π~

∑

n

∫

dE {Tn(E) [fL(E) (1 − fL(E)) + fR(E) (1 − fR(E))]

+ Tn(E)(1 − Tn(E)) [fL(E) − fR(E)]2
}

(2.11)

is found, where the definition of the symmetrized current has been used. Current

conservation assures, that S = SLL = SRR = −SLR = −SRL. It is easily seen, that for

zero bias (equilibrium situation) terms of the kind fL(E) − fR(E) vanish. This leads

to a vanishing current, as well as a vanishing second part of the noise expression. The

surviving term is the thermal noise and can be related to the conductance. This relation

is called the fluctuation-dissipation theorem (FDT) and leads for the Fano-factor F =

S/2eI to a cotangent hyperbolic behavior in (eVb/kBT ). In the zero temperature limit

in turn, contributions involving fr(E)(1 − fr(E)) vanish, such that a simple relation

of the (non-equilibrium) shot noise to the conductance is not possible anymore. For

energy-independent transmission probabilities Eq. 2.11 can be approximated as

S = eVb
e2

π~

∑

n

Tn(1 − Tn), (2.12)

which leads to a Fano factor

F =

∑

n Tn(1 − Tn)
∑

n Tn
. (2.13)
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In the case of one channel (n = 1), we recover the same result as calculated in the last

section for the case of a single-barrier.

A finite frequency formula for the shot noise has been derived for energy-independent

transmission probabilities by Khlus [23] within a scattering approach assuming the

scattering matrix to be diagonal, and Yang [25], within a description of a quantum

point contact. The integrals as present in Eqs. 2.9 and 2.11 can be taken out, resulting

in an expression being valid for frequencies ω < ωc below the collective response ωc of

the structure. The shot noise then reads

S(ω, Vb, T ) =
e2

2π~

{

2~ω coth

(

~ω

2kBT

)

∑

n

T 2
n

+(~ω + eVb) coth

(

~ω + eVb

2kBT

)

∑

n

Tn(1 − Tn)

+(~ω − eVb) coth

(

~ω − eVb

2kBT

)

∑

n

Tn(1 − Tn)

}

, (2.14)

with arbitrary frequencies, voltages and temperatures. In the zero-frequency limit

Eq. 2.11 is recovered for energy-independent transmission probabilities, when expand-

ing in the coefficients Tn, such that terms of order T 2
n are neglected. In this regime

of low transparency corresponding to the Poissonian statistics we can consider the

following three extreme situations:

(I) In the zero frequency (ω = 0) and zero bias (Vb = 0) regime the thermal noise is

found to be

S(0, 0, T ) = 4kBTG, (2.15)

which we discussed before and relates to the fluctuation-dissipation theorem. For finite

temperature the noise still has a finite value due to a finite conductance G.

(II) If we consider the zero frequency (ω = 0) and zero temperature (T = 0) regime,

we find

S(0, Vb, 0) = 2eVbG = 2eI, (2.16)

which we discussed in the last section to be the Poissonian (non-equilibrium) shot

noise.

(III) The excitation noise, due to non-vanishing frequency ω, but zero bias (Vb = 0)

and zero temperature (T = 0) is found to be

S(ω, 0, 0) = 2~ωG, (2.17)
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and accounts for vacuum-polarization effects that are important at high enough fre-

quencies. The comparison of these three regimes allows an easy estimation of the

different noise sources, since all of them are expressed in terms of the conductance.

At the beginning of this chapter we discussed other frequency dependent sources of

noise, which can be eliminated, when considering frequencies above ∼ 100 kHz (for

quantum dots) or ∼ 100 MHz (for molecules). This corresponds to an energy scale

of ~ω ∼ 10−12eV (or ~ω ∼ 10−9eV respectively). On the other hand, temperatures

in experiment will be in the regime of about 1K or room temperature, which defines

an energy scale of kBT ∼ µeV (kBT ∼ meV). The bias region in which the noise

is measured corresponds to a scale ∼ meV (∼ eV). For both, quantum dots and

molecules, the frequencies needed to eliminate other sources of noise are still so small

(~ω << kBT << eV), such that the shot noise can be viewed as white noise.

We summarize the main properties of the shot noise as a non-equilibrium frequency-

independent phenomenon as follows: If transport is due to uncorrelated events in time,

Poissonian behavior with a Fano factor equal to one is observed. For fermionic systems

that we want to describe such a behavior arises in the case of a single barrier structure,

if the transparency of the junctions the electrons are tunneling through is very low.

The same behavior can be observed for a double barrier with extremely asymmetric

barrier heights, since the less transparent side will be the bottleneck for the tunneling

events. For symmetric situations in a finite bias regime the Fano factor will have a

value of 1/2, since half of the time the junction is open for electrons to tunnel through,

whereas else tunneling is blocked. In case of a quantum mechanical description this

blocking which leads to a sub-Poissonian F < 1 noise is explained by anti-bunching

due to the Pauli exclusion principle. For high transparencies the Fano-factor can be

reduced even down to zero. The shot noise itself turns out to be the strongest at

intermediate transparency. These three values of the Fano factor reflect a universal

behavior of the shot noise that is observable in many systems. However, for the use of

the current-current fluctuations as a tool which should provide additional information

about system parameters, we are interested to find non-universal behavior, allowing to

characterize special values, non-monotonicities, etc. as being due to the specificities of

the considered system.

It is obvious, that systems involving more degrees of freedom offer more possibilities

to show interesting behavior in the noise, when symmetries are broken by electronic-,

coupling- or other parameters. It has been shown, that the inclusion of interaction

effects in mesoscopic systems has a special importance for the shot noise. Additional

correlations between tunneling events will show up, making their consideration not just

a simple generalization as was the case of a multi-channel model compared to a single

channel model. The system, in the presence of interactions, will remember information

about previous states, leading to a much more complex behavior of the shot noise and

the Fano factor.
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A theory taking into account such effects would help to characterize and additionally

understand the physics of mesoscopic systems in more detail. This is the central con-

cern of this thesis. A discussion of theories trying to deal with shot noise in mesoscopic

devices will be presented in the next chapter, followed by our own approach, for which

we demonstrate that we are able to include the desired interaction effects. Up to now

a formula taking into account two particle interaction effects as well as the coupling

of a system to its environment has been presented only for the current [22]. So far

all theories do perturbation expansions in either interaction or coupling parameters

[26, 27, 28, 29, 30]. For an intermediate coupling regime (higher order in the transmis-

sion parameter) only few work has been done while additionally focusing on restricted

physical situations.

We want to end this section with the current and shot noise formulas wich we refer to

when talking about non-interacting results in chapter 4. Within the Landauer-Büttiker

approach, Eqs. 2.9 and 2.11 have been derived for a two-terminal, non-interacting,

multi-channel system. We want to specify these results in order to discuss resonant

tunneling barrier structures, which we will consider in the next chapters. Resonant

tunneling arises from the wave nature of electrons, giving rise to energy quantization,

and is thus observable only in sufficiently short (compared to temperature) samples.

We rewrite Eq. 2.9 for the current (describing non-interacting systems U = 0) in the

form

IU=0 =
e

2π~

∫

dE
∑

σ

τσ(E)[fL(E) − fR(E)], (2.18)

and Eq. 2.11 for the shot noise as

SU=0 =
e2

π~

∫

dE
∑

σ

{τσ(E)[fL(E)(1 − fL(E) + fR(E)(1 − fR(E))]

+τσ(E)(1 − τσ(E))[fL(E) − fR(E)]2}, (2.19)

where we use the Breit-Wigner formula for the transmission function

τσ(E) =
4ΓLΓR

Γ2

(Γ/2)2

[(E − εσ)2 + (Γ/2)2]
. (2.20)

The energy-dependence of the coupling parameters ΓL,ΓR (with a total linewidth Γ =

ΓL + ΓR) has been neglected. We specified the n different channels as two spin states

σ =↑, ↓ with energies εσ. Together with the empty state, three different states are

relevant in structures, described by these formulas. A non-interacting single level

quantum dot connected to two electron reservoirs would be the perfect system to be

studied with these formulas. Since Eqs. 2.18 and 2.19 are exact in the linewidth or

coupling strength Γ associated with the transparency of the barriers, an expansion in
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this parameter can be done order by order. In our results in chapter 4 an expansion in

exactly this parameter to first and second order will be presented for more complicated

systems and considering interaction effects. Eqs. 2.18 and 2.19 will serve as limiting

cases, allowing to test the consistency of our theory.

We finally want to discuss two approximations for these equations explicitely, which are

significant and have been verified in many theoretical as well as experimental works.

First, in the case of small coupling Γ, an expansion up to lowest (first) order of above

equations is justified, which leads to a Fano factor

F (1) =
Γ2

L + Γ2
R

(ΓL + ΓR)2
. (2.21)

This result is valid for bias voltages above the lowest of the energies εσ (finite transport)

and small temperatures. It is found that for current and shot noise, several channels

provide additive contributions and thus always lead to the same Fano factor. Values

between 1 (strongly asymmetric coupling) and 1/2 (symmetric coupling) are possible.

For bias voltages below the excitation energies εσ no transport is possible (given that

the temperature is small), unless stronger coupling is considered. In the small bias

regime we can therefore expand the above expressions up to second order, which leads

to a Fano factor

F (2) = coth

(

eVb

2kBT

)

. (2.22)

The first order contributions can be neglected in this case since they are exponentially

small. The crossover from thermal noise to the Poissonian shot noise is described by

this formula, which turns out to be independent of the values of coupling parameters.

We keep in mind the main results for the non-interacting system as given in Eqs. 2.18-

2.22 together with the statement, that interaction effects may lead to values of the

Fano factor, others than F ≤ 1.
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2.2 Experiments

Electronic devices for future technological applications may be realized in manifold

ways. The only condition all of them have to obey is that electrons, by scaling down

the device dimension, have to offer their real quantum nature, resulting in new physi-

cal effects, which cannot be observed in conventional transistors. In the extreme, only

a few or even single electrons tunnel through structures, which are confined to less

than three dimensions. Whereas a bulk semiconductor as the ‘Esaki‘ diode describes

a three dimensional electron gas (3DEG), a confinement to two dimensional electron

gases (2DEG) is achieved for quantum wells, such as resonant tunneling diodes. When

reducing the electrons mobility by a further degree of freedom, a 1DEG is performed,

which has the structure of a quantum wire (examples are carbon nanotubes). Single-

electron tunneling, exhibiting effects like Coulomb-blockade, is typical for zero dimen-

sional (0D) quantum dot structures. Here, besides the shrinking to sizes in the order

of several nanometers, all degrees of freedom (with respect to the electron mobility)

have been removed, and bound or resonant states are formed. The band structure has

been broken up into a set of single-particle levels, separated by a finite level spacing.

Besides the semiconductor quantum dots, molecules (e.g. the fullerene molecules) can

be viewed as such zero dimensional systems as well, since the molecular orbitals define

the electronic level-structure in this case. The same considerations hold for sufficiently

short carbon nanotubes.

From a theoretical point of view, quantum dots can be understood as localized sepa-

rated levels, whereas the more complex molecules are better described by delocalized

coupled orbitals, similar to several coupled quantum dots. The names ‘artificial atoms‘

and ‘artificial molecules‘ have been established for single and coupled quantum dots in

the last years. These are the kind of systems, for which we develop a theory of current

and shot noise.

Shot noise measurements have been presented for many different systems in the last

years. The sub-Poissonian partition noise as discussed in the last section has been

observed in a quantum mechanical system [31] as well as the anti-bunching effect within

a fermionic Hanbury Brown and Twiss Experiment [32, 33] (in analogy to the bosonic

Experiment). Sub-Poissonian noise with values of the Fano-factor between 1 and 1/2

has been seen in experiments using a scanning-tunneling microscope (STM) [34], in

quantum wells [35, 36], where even stronger suppression for longer samples is found

when a ballistic transport situation is reached. Such strong suppressions as for ballistic

systems [37, 38] are present also in diffusive wires [39, 40] (suppression to F = 1/3)

and metallic resistors [41], where a dependence of the Fano-factor on the sample length

has been discussed. The strong reduction of the noise in all these systems can be

explained with a large number of electron paths through the setups. This causes a

good transparency.
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However, also super-Poissonian behavior of the Fano-factor has been observed, as in

the case of resonant tunneling diodes [42, 43, 44], when a negative differential con-

ductance (NDC) occurs. Here, electrons tunneling into the well increase the density of

states, which allows for more tunneling events in time, resulting in positively correlated

transport. Super-Poissonian noise thus arises due to charge accumulation. In a metal-

semiconductor field effect transistor an enhanced shot noise has been explained by two

interacting impurities carrying the current in a correlated way [45], which emphasizes

that possibly interesting behavior in even smaller (nanosize) systems could be found

due to finite interaction effects.

For carbon nanotubes all degrees of freedom for electron motion up to one have been

removed, which further approaches the zero dimensional molecule and quantum dot

structures. Shot noise measurements showed a suppressed Fano factor [46, 47] F =

g(1 − T ) with g = [0.2, 0.3], which is in agreement with theoretical calculations for

Luttinger-liquid models. Ballistic transport as well as electron-electron interactions

further negatively correlating the carriers explain this behavior here. For very short

nanotubes the band structure, which was present for nanotubes of length ∼ µm, is split

into discrete energy states, and a zero dimensional system is achieved, in principle [48].

For such structures only current measurements have been presented, focusing on the

Kondo regime [49, 50].

Molecules and quantum dots are structures of nanosize with respect to all spacial di-

mensions. They have a very limited charge capacity (molecules: C = 10−18F , QDs:

C = 10−15F ), and thus only a few electrons confined to a small volume. The de Broglie

wavelength of these electrons is comparable to the size of the dot and the electrons oc-

cupy discrete quantum levels (comparable to atomic orbitals in atoms) and have a

discrete excitation spectrum. This is a regime where single-electron tunneling leads to

interesting quantum mechanical effects, very different to those appearing in classical

devices. Charging and Coulomb-interaction determine the transport in a situation,

where the discreteness of the charge plays an important role. As we discussed in the

last section, this is the regime where shot noise is expected to show an interesting,

non-trivial behavior. Since both, molecules and quantum dots are candidates for fu-

ture technological applications due to their small size, one has to fully understand the

transport properties of these kinds of devices, which makes shot noise measurements a

promising venture. Whereas quantum dots can in principle be produced in a controlled

way, where the coupling to the environment they are embedded in is tunable to a large

degree, this is not the case for molecules. On the other hand, the variety of system

parameters in setups with molecules enables many possibilities of device designs, which

is the major reason, making molecular electronics so attractive.

In the following we thus want to discuss experiments on current and shot noise in

quantum dots and molecules, after briefly characterizing these structures. Our special

interest lies in the weak (sequential tunneling), but also intermediate (co-tunneling),
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coupling regime, where interesting behavior of the Fano-factor can be expected, due to

relevant interaction effects.

2.2.1 Quantum dots

We want to distinguish between two principle quantum dot structures, the lateral

(planar) and the vertical QD [1, 2]:

1) A lateral QD is created by patterning several metal electrodes, or gates, on the

surface of a two-dimensional electron gas (2DEG) heterostructure (usually of GaAs).

A schematic picture is given in Fig. 2.3. A negative voltage (VG) applied to a gate raises

Figure 2.3: Schematic picture of a lateral QD structure. Metallic gates define the

dot in the 2DEG underneath.

the electrostatic potential in its neighborhood and depletes the underlying 2DEG in the

vicinity of the gate. The total charge on the dot structure and the barrier height, which

defines the transparency of tunneling, are determined by the metallic fingers, being

tuned by the applied gate voltage VG. In experiments current and shot noise have to

be measured by applying a finite source-drain voltage VSD = VL−VR (VSD = Vb), which

typically is of the order of ten to hundreds of mV . At low bias, the conductance G =

∂I/∂VSD turns out to oscillate in dependence of the gate voltage, known as Coulomb-

oscillations. Peaks in the conductance are observed at the degeneracy points of adjacent

charge states. In between the current is suppressed (Coulomb blockade), since the

available energy for single-electron hops through the dot structure is smaller than the

energy needed to charge the system. The possibility to switch the current on and off by

applying a gate voltage justifies the name single-electron-transistor (SET) [51]. Only
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thermal occupation at higher temperature or higher transparency may destroy this

effect again. Typical temperatures in experiments are about 0.1 to 1K (corresponding

to an energy scale of about ∼ 10 − 100 µeV), which is small compared to a charging

energy of about 10 − 100 meV, e.g. Having barrier heights in the order of meV an

estimation for the coupling strength to the dot can be made, from a WKB calculation,

where the barrier length, density of states etc. enter. Typical values of a coupling Γ

are in the order of 10 µeV.

2) Vertical QDs provide a different approach to realize single-electron tunneling. Here

the current flows vertically with respect to the heterostructure layers, relying on AlAs,

or other large-gap materials, to form tunnel barriers. The electrons are confined by the

combination of the heterostructure layers providing vertical confinement and lithog-

raphy providing in-plane confinement. Since here no in-plane tunneling is required,

strong lateral confinement can be achieved by eliminating all but a narrow pillar in a

double-barrier heterostructure. A schematic picture is shown in Fig. 2.4. Contacts on

Figure 2.4: Schematic picture of a vertical QD structure. The AlAs and GaAs

layers are typically several nm thick.

the upper and lower side of the dot structure allow for two terminal measurements of

current and shot noise. The introduction of a gate as for the lateral QDs is techni-

cally more difficult. On the other hand controlled preparation of fixed tunnel barriers

(typically of energy height ∼ 100 meV) is possible. The electrons couple more or less

uniformly to the entire area of the QD, whereas in lateral QDs the electrons tunnel

into the edges.

The single particle energies of the electrons on the dot structure have a certain spacing

∆ε. A continuous spectrum with ∆ε → 0 describes a metallic island, whereas a discrete

spectrum with a large level spacing ∆ε→ ∞ the extreme case of a single level quantum
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dot. We are interested in a region in between, where one up to several levels contribute

to the transport, which is the case in molecular transport as well.

Theoretically, transport through quantum dots in general is described very well in

terms of the ’orthodox theory’, where the barrier hight (connected to the lifetime of

electrons on the structure or the total linewidth Γ as introduced in the last section) is

small compared to other energies, such as the charging of the dot. There are however

situations, when a weak coupling description is insufficient or wrong, such as in the

Coulomb-blockade regime, where transport is strongly suppressed. Here the picture of

single electrons hopping one after the other onto and off the dot structure (sequential

tunneling) can not be applied. Now, processes allowing to tunnel through the whole

structure via intermediate virtual states, so called ’co-tunneling’ processes play an

important role. Theoretically such processes are described by a perturbation expansion

in the parameter Γ to higher (second) order, reflecting an intermediate (stronger)

coupling region. For the non-interacting case, results for the current and shot noise

in these regimes (Coulomb-blockade and transport) have been presented in the last

section. A theoretical discussion will follow also in the next chapter.

Measurements of the current have been done for lateral [52] as well as vertical QDs [53]

in the sequential tunneling regime. Co-tunneling effects have been observed also in

lateral [54] and vertical [55] structures, where elastic and especially inelastic processes

enhance the current at specific energies corresponding to the level structure of the dot.

Typically, these additional processes, showing up in conductance peaks within the

Coulomb-blockade region are illustrated in Coulomb-diamond plots, where the peaks

are indicated as dark regions (the higher, the darker) in the source- drain voltage versus

the gate voltage plane. The coupling strength for co-tunneling processes to be visible

is typically of the order, (or larger) of the temperature. For a level width Γ being very

large compared to the temperature, Kondo behavior can be observed [56, 57], which

arises from the interplay of charging effects and quantum fluctuations.

Measurements of the shot noise in quantum dots are still rare. Up to date, it has

been measured only in vertical structures [15, 58, 59, 60], whereas in lateral QDs 1/f -

noise [61] and generation-recombination or random telegraph noise (RTN) [62] have

been discussed. However, the lateral structures would be the more interesting objects

to study, since a closer relation to molecular systems is given, with tunable coupling

parameters, more degrees of freedom, etc.

The frequency dependent 1/f or generation-recombination noise has been shown in [58,

59, 60] to be eliminated for frequencies larger than some kHz. In Ref. [59] current I

and Fano factor F (here denoted by α) are measured in dependence of the source-drain

voltage Vsd (results are shown in Fig. 2.5). For small temperatures of 1.5K and 3.7K

(∼ 130 µeV and 320 µeV) and weak coupling (’orthodox theory’ is applicable), current

and shot noise have been measured for an InAs QD. In contrast to the fabrication
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Figure 2.5: Experimentally measured current (a) and Fano factor (b) vs. source-

drain voltage for temperatures T = 1.5K (circles) and T = 3.7K (triangles).

The experiment has been realized from A. Nauen in the group of R. J. Haug [59].

Sequential tunneling calculations are used to fit the results and extract the coupling

parameters ΓL ∼ 0.4 µeV and ΓR ∼ 1.6 µeV.

technique described above, these vertical QDs have been produced by a self-assembled

growth of the layers. Experimental results for the two temperatures are indicated by

symbols and theoretically calculated curves by solid lines. Since the current scales

with the strength of the coupling, the experimental values (here hundreds of pA) can

be taken, to estimate the absolute value of Γ ∼ 2 µeV. The asymmetry ΓR/ΓL = 4.4

leading to values ΓL ∼ 0.4 µeV and ΓR ∼ 1.6 µeV is then extracted from the Fano

factor. The underlying formulas, which allow for such a procedure are theoretical

calculations in a lowest order perturbation expansion in Γ. It is shown in Ref. [59], that

several QDs (in their case 3) with independent additive contributions can explain the

experimental results, where each of them allows for tunneling through a spin degenerate

ground state, where double occupancy is forbidden due to Coulomb interaction. The

expressions, used to fit the experimental data, have been derived in [63, 64, 6], for

example. They will be presented also in chapter 4. Peaks in the Fano factor in Fig. 2.5

can be explained by the sum of the contributions of several QDs.

The above example shows, that ‘orthodox theory‘ can be applied very well in a fi-

nite transport regime for QD structures. This, however, will not be the case in the
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Coulomb-blockade, where first order calculations turn out to be suppressed exponen-

tially. Here, higher order calculations including co-tunneling processes will become

relevant, although we are in a weak coupling situation in principle. Whereas vertical

quantum dots may serve as a self-consistency test of a theory of shot noise, the same

theory may be used for molecules the other way around, namely to determine the

unknown system parameters.

2.2.2 Molecules

Transport through single molecules is a promising field of research [3, 4, 65, 66, 67, 68],

since nanoscale electronic devices, due to many degrees of freedom, offer a potentially

large number of possible device designs. What these degrees of freedom are, and

how they may be handled, will be discussed in the next chapter, where theoretical

descriptions of molecular transport are presented.

1) In experiment, two terminal transport through a single molecule has been achieved

by deposition of the object between two fixed electrodes [69, 70, 71, 72, 73] by making

use of a mechanically controlled break-junction technique (MCB). Transport is mea-

Figure 2.6: Sketch of the mechanically controlled break-junction-technique to form

a molecular device. Figure by courtesy of H. Weber.

sured mostly in setups where organic molecules are attached via thiol (S) groups,

providing a strong chemical bond, to gold (Au) electrodes. This is realized by a metal-

lic wire substrate on a flexible substrate with a narrow bridge-like constriction. If the

substrate is bent by a pushing rod, the bridge on top stretches, until it finally tears

apart, resulting in a nanoscopic pair of electrodes facing each other. A sketch illus-

trating this procedure is shown in Fig. 2.6. A high precision (less than an Ångström)

of distance control has been achieved within this technique, which reflects a high me-

chanical stability. Other advantages of this technique are clean contact surfaces (which
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contain uncontaminated over several days), a wide range of operation (ultra high vac-

uum, low temperature). Not at least MCB can be employed to study various transport

phenomena (shot noise, thermopower, Kondo effect, etc.).

In order to fabricate molecular devices, a solution of molecules is spilled over the junc-

tion (typically organic molecules e.g. benzene fabricated by chemists), and finally

the distance of the gold electrodes is reduced, in the hope that at the end a single

molecule is trapped in between. The direct observation of symmetric and asymmetric

I-V-characteristics within measurements of symmetric and asymmetric molecules [71],

has demonstrated uni-molecular transport. However, also experiments with molecular

films have attracted much interest, since diode behavior [74, 75] and negative differ-

ential conductance (NDC) [76, 77] have been observed. Within a MCB-technique but

also others, even the Coulomb-blockade effect and Kondo behavior, have been observed

at low temperatures [78, 79, 80].

S
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Figure 2.7: Sketch of a conducting-tip STM above a molecule attached to a con-

ducting gold (Au) substrate.

One has to realize that the gold electrodes (good metal with well known electronic

structure), having a cross section of about 20-50 nm, are relatively large compared to

the molecules (electronic structure calculated from quantum chemistry) of nanometer

scale. This qualitative difference in size and structure makes the contact or interface

properties of the components to poorly understood parameters, especially in finite bias

transport situations. With an adequate theoretical description of shot noise, many

open questions could be answered by a comparison to experimental data.

2) Concerning the interface another possibility to measure transport through single

molecules is provided by a scanning tunneling microscope (STM). The STM is widely

used in both industrial and fundamental research to obtain atomic-scale images of
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surfaces. It provides a three-dimensional profile of the surface which is very useful for

characterizing surface roughness, observing surface defects, and determining the size

and conformation of molecules and aggregates on the surface. Two terminal transport

with a conducting-tip STM above a molecule attached to a conducting substrate has

been achieved in experiment [81, 82, 83, 84]. An illustrative sketch is given in Fig. 2.7.

The gap between the STM and the fixed electrode structure has to be adjusted such

that only a single molecule has place to be trapped in between. The major problem

of this technique is the fact that the STM is designed to operate in a feedback loop.

I-V-curves can be obtained after switching off the feedback loop, which is usually done

in a short time period, since the electrodes become sensitive to temperature drift and

vibrations.

A shot noise measurement has been published in Ref. [34], where a small metal particle

of 5 nm size has been deposited between the substrate and the STM. As discussed

before, Fano factors between 1 and 1/2 have been observed, which is in agreement

with theoretical predictions for the SET regime. Earlier measurements reported about

1/f and thermal noise [85]. However, shot noise in single molecules has not been

measured so far. In comparison to the quantum dot structures as discussed before one

needs to reach higher frequencies until a white noise behavior corresponding to shot

noise is found. Noise measurements with single molecules using the MCB-technique

have shown frequency dependent behavior due to 1/f -noise, since only frequencies up

to several kHz have been measured [86]. The expected shot noise is several orders of

magnitude smaller compared to the measured noise, and will become visible therefore

at much higher frequencies (above MHz). Technical problems will hopefully be solved

soon so that experimental data become available in the near future.

Application of our theory to a specific experiment

In order to close the discussion on experiments on quantum dots and molecules we

want to provide a short discussion about data, which are available at present. These are

current measurements through single molecules. As an example we consider the current

voltage characteristics of a terphenyl-type molecule. This molecule consists of three

phenyl rings in series, which are directly coupled. A picture is given in Fig. 2.8. Thiol

groups (S) on the left and right side of the molecule bind to the gold electrodes (Au)

in experiment. Methyl groups make the phenyl rings about 60◦ rotated with respect

to each other, leading to a suppressed π-conjugation between the rings. The coupling

of the left and right phenyl ring to the central ring is therefore expected to be weak.

Depending on the strength of the thiol bonds to the electrodes, the molecule might be

described theoretically as a system of three coupled quantum dots or a single quantum

dot, when these bonds are much larger compared to the coupling of the phenyl rings.

The latter situation is expected to be present here. Quantum chemical calculations
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Figure 2.8: Picture of the terphenyl molecule consisting of three phenyl rings.

Methyl groups make the phenyl rings 120◦ rotated against each other, leading to

a suppressed π-conjugation. Figure by courtesy of M. Elbing [87].

could fix the electronic energy parameters and reduce the free model parameters to a

minimum. We will show here, that even a simple single level model system can explain

most of the features being observed in the current and the conductance.

In Fig. 2.9 we find a current measurement through terphenyl at a temperature of

T = 30K (∼ 3 meV). The current I (thin solid line) and the differential conductance

G(Vb) = ∂I(Vb)/∂Vb (thick solid line) vs. the bias as experimental results are compared

to theoretical calculations of a single level system up to second order in Γ (dashed black

lines) in Fig. 2.9. These calculations have been done within our diagrammatic theory

we will discuss in the next chapter, and should serve here to illustrate the applicability

of our theory even to complex systems like molecules. We depicted only a single

measuring cycle from -0.8Vb to +0.8Vb and back, in order to permit an easier comparison

of experiment to theory. In general of course many such cycles are performed and at

the end the data is smoothed.

We are able to extract considerably much information from our single level model.

The broadening of the conductance peaks is due to a combination of temperature and

coupling, about 6(kBT + Γ). This allows us to determine the total linewidth, which

we estimate to be about Γ ∼ 9 meV. The comparison of Γ and T tells us that neither

a weak Γ << kBT nor a strong Γ >> kBT coupling situation is present, but an

intermediate one.

Transport sets in at a bias of Vseq = 0.5Vb, which we model with a corresponding

excitation energy of the single level. We find an asymmetry in the conductance peaks,

where the left peak in Fig. 2.9 is about twice as large as the one on the right side. This

can be modeled only, when taking into account a finite Coulomb-interaction in our

model and when choosing a very asymmetric coupling ΓL/ΓR ∼ 2000. Less asymmetric

couplings would be found, when modeling the data with several orbitals (levels). This

can be explained, since at finite transport (above the sequential threshold Vseq) the

current in first order (orthodox theory) is calculated to be

I(1)(Vb > Vseq) ∼
2e

~

ΓLΓR

(NΓL + ΓR)
, (2.23)
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Figure 2.9: Current (thin line) and conductance (thick line) vs. bias voltage for

terphenyl measured by M. Di Leo in the group of H. Weber with a MCB-technique.

The dashed lines are theoretical results of a single level model for an intermediate

coupling regime, being relevant here.

where N denotes the number of states available to enter the molecule (there is only one

possibility to leave the molecule from each of the N states). For the present single level

model N equals 2 because of the two spin states. Inserting the extracted parameters in

Eq. 2.23, we find that the predicted current to be in agreement with the experimentally

small measured current of some nA for larger bias. In our model a positive bias is due

to a positive choice of the left chemical potential and a negative for the right one. ΓL

and ΓR have to be exchanged, when reversing the bias. The need of additional levels

to model the data becomes obvious also in the large bias regime, where the theoretical

curve for the current lies below the experimental result. When additional channels are

included, the theory will be able to better fit the experimental data.

The only feature which can not be qualitatively understood with our model is the

conductance at small bias, which lies about a factor 20 below the experimental data

of 2.5x10−5G0 (G0 = 2e2/h = 77µS is the quantum of conductance). We explain the

experimental excess conductance by an ohmic offset due to additional transmission of

electrons through the setup that does not include the molecule.

We find that information about absolute coupling, asymmetry, excitation energies,

interaction effects and the number of conducting channels can be extracted from a

relatively simple model. Much better statements could be given with the availability

of shot noise data, as the current provides information only about a particular combi-

nation of the coupling constants (Eq. 2.23). One has to realize that asymmetric values
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of ΓL,ΓR compensate for a stronger absolute value of Γ. A definitive answer on the

real absolute and relative coupling strength can be given by the shot noise measure-

ments. Since especially the low bias regime (Coulomb-blockade and above) permits a

good comparison between experiment and theory, a theoretical description of molecules

should include co-tunneling effects.

We are aware of the fact that a molecular device is a complicated system with a

complex electronic structure, where vibrational, photon-relaxation effects, etc. may

play a role. We also did not account for the spatially delocalized nature of the molecular

orbitals of the molecule as shown in Fig. 2.8. In chapter 4.4 the impact of such

effects is studied in more detail. In addition the geometry of the environment and the

orientation of the molecule will influence the transport properties. It has been shown

in theoretical studies, for example, that the conductance can be different by orders

of magnitude for different orientations of the molecule [88, 89]. On the other hand,

transport measurements on molecules are still limited. The relevance of the above

mentioned influences has not been studied extensively. Sometimes it is even unclear,

if really a single molecule has been measured, or an ensemble of them. This is another

reason, why shot noise measurements in molecular devices are important, since the

behavior of the noise or the Fano factor may provide information about the presence of

certain effects. Additionally, as we see from Fig. 2.9 an intermediate coupling situation

is likely to be present in many experiments, which makes a theoretical inclusion of

higher order co-tunneling processes necessary.
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3 Theory

To date, many theories exist that attempt to describe transport through general

nanoscale systems (quantum dots, atoms, molecules, nanotubes, DNA, etc.). In or-

der to really describe such systems in a realistic manner, the electronic structure of

both, the nanoscale system and the macroscopic electrodes would have to be character-

ized within a microscopic theory. Such a theory would have to account for all relevant

many-body effects, and therefore go beyond a single-particle picture. Let us introduce

a parameter U that shall represent all classes of many-body interaction effects (de-

scribed by two-particle operators).

Now, one wishes to connect both components of transport (nanoscale island and reser-

voir electrodes) which introduces a further characteristic parameter, namely the cou-

pling strength Γ. The coupling to electrodes however affects the electronic structure

of the nanoscale island and hence further complicates the whole problem of computing

transport.

If now a bias is applied to the setup we obtain a complex system out of equilibrium.

We disregard the geometry of the different components, the environment, mechanical,

optical and other effects, which may additionally play a role in finite transport situa-

tions and even further complicate matters. A third parameter we want to introduce

here, which determines physical effects one observes in transport measurements, is the

temperature T.

Therefore, we are interested therefore in a microscopic theory describing non-equilibrium

transport phenomena, while allowing for a complete treatment of all these parameters

U,Γ and T. This theory should be applicable to arbitrary complex systems.

Such a theory however does not exist. Several communities of researchers have formed

specializing on electronic transport through the different systems and focusing on dif-

ferent regimes of the above discussed parameters. Current through quantum dots,

molecular electronics, spintronics, etc. are some of the fields concerned with electronic

transport. A recently formed field of research deals with shot noise as a non-equilibrium

phenomenon, applied to study transport in variety of systems connected to supercon-

ducting, ferromagnetic, etc. leads.

But what are the theories currently used to study current as well as shot noise in such

systems, and what are the regimes for which their approximations are valid? The main

problem consists in the exact treatment of the two-particle operators, thus correctly

accounting for interaction effects. There may be systems and transport situations in

which those effects are of minor importance and can be neglected. This is the case for

ballistic transport, which we discussed in the last chapter.

Electronic transport in mesoscopic structures in this picture can be studied by using the

Landauer-Büttiker approach [90, 91, 92, 93, 5, 21] to conductance in nanometer-

sized coherent systems. Here, coherent means, that the quantum mechanical coherence
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length is longer then the sample size (no energy relaxation takes place in this region),

and electrons originating from the reservoirs maintain their phase coherence. To view

the electrons as non-interacting (U = 0) particles in phase coherent systems makes

sense only, if the system couples via many channels (or at least a few almost open

channels) to the reservoirs. This reflects a situation of ballistic transport. The number

of channels is related to the conductance in the Landauer-Büttiker approach. The

above requirement therefore implies a good conductance and hence a strong coupling

between reservoirs and system, such that the mesoscopic system itself could be regarded

as an impurity at which the electrons are scattered. This approach has been introduced

in the last chapter and is the underlying theory for the physical situation as discussed

in chapter 3.1.1. If the condition of large conductance is not given, interactions play a

dominant role, since electrons will more likely be localized within the system compared

to the reservoirs.

At this point we stress that exact formulas for current and shot noise have been derived

within a scattering formalism in the non-interacting case [5, 21]. However, as discussed

above the flow of electrons through a mesoscopic conductor may be correlated due

to Coulomb interactions. The importance of these correlations is determined by the

strength of Coulomb interactions for which the charging energy (energy cost for adding

or removing electrons) is a qualitative measure in a mesoscopic system. The charging

energy can be of the order of meV for quantum dots or even of order eV in the case of

molecules.

One qualitative theory taking into account interaction effects is the so called mean

field theory. The basic idea is to include the electron correlations on the average,

and hence account for the effects of other particles by introducing a mean density

(mean field) of other electrons which a specific particle feels when moving around.

The reduction to an effective single-particle picture makes the problem soluble again.

Mean field theories are often used to study phase transitions as in superconductors

(BCS-theory) or for Bose-Einstein condensates (BEC). In transport they have been

used to describe current and shot noise addressing the Kondo problem (at small tem-

peratures TK) [94, 95, 96, 97, 98, 99]. So called slave-boson techniques as well as the

description within a Hartree-Fock approximation are examples for mean field theo-

ries. Although the mean field approximation in many cases is sufficient to understand

important physical features, it still fails, if explicitly the dynamic electron-electron cor-

relations are needed to realistically describe transport and two-particle effects cannot

be disregarded. This is certainly the case if the system is so small, that charging of the

system costs more energy than can be provided by other energy scales like temperature

T or the coupling Γ.

Another possibility to deal with the dynamical aspects of interacting many-body sys-

tems is the equation of motion technique, where a series of coupled differential

equations is generated, by differentiating the correlation function (Green functions)
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a number of times. In general such a set of differential equations is not soluble and

only a small set of Hamiltonians describing interacting systems can be solved exactly.

Additional approximations like mean-field theories or random phase approximations

(RPA) need to be applied, making this approach similar to the other mean field theo-

ries discussed before.

Many body systems out of equilibrium can be described by the Keldysh technique [100]

which allows to deal with the real-time evolution of the system at finite temperature.

Transport can be expressed in terms of non-equilibrium Green functions (NEGF) which

may be derived within an equation of motion technique or a direct expansion of the

S-matrix. Exact formulas have been derived for the current and shot noise also in

this approach for the non-interacting case and for the current including interaction

effects [22, 101]. For the shot noise however it turns out to be difficult to express

two-particle Green functions (present here because of current-current correlations) in

terms of one-particle Green functions. All formulas presented so far for the shot noise

within a NEGF-formalism make use of Wick‘s theorem (which can be applied to non-

interacting systems only) and therefore do not account properly for the interaction

effects.

However, a Keldysh-formulation of the shot noise is able to handle all three above

discussed parameters U,Γ,T in transport situations, in principle. It is our aim in this

chapter to show this. We express current and noise in terms of irreducible self-energy

diagrams (or transition rates) which are closely related to the Green functions. The

general technical problem that always remains is the calculation of the objects contain-

ing the information about the systems transport properties, whether it is the S-matrix,

Green function or, in our case the transition rates.

In order to do so, one usually expands in either the interaction U (Hartree approxi-

mation) [29, 30] or the coupling strength Γ (orthodox theory, golden rule) [26, 27]

up to the lowest non-vanishing (first) order. [Only few works expand to higher orders

in U [102, 103] and Γ [104, 105].] Especially for the latter approach which describes

sequential (incoherent) transport by considering first order perturbation theory in Γ

there exists a lot of work. This weak coupling limit will be discussed in more detail in

chapter 3.1.2.

If we want to study transport for arbitrary choices of the above parameters we would

either have to do a perturbation expansion up to infinite order or make use of a non-

perturbative treatment (e.g by using renormalization group methods, resonant tunnel-

ing approximation, etc.) which however would restrict us to a very limited number of

model systems. We are interested in describing an intermediate coupling regime by

using the perturbative approach as we motivate in chapter 3.1.3. We find a diagram-

matic technique to be able to deal with this problem.

We further show that our theory as presented in this chapter can be extended to de-

scribe coherent transport, meaning the inclusion of non-diagonal elements in the
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density matrix. This should allow for physical investigation of coherence effects in

delocalized systems as was investigated by Gurvitz [106, 107, 108, 109]. The disadvan-

tage of the latter approach is a restriction to zero temperatures and a large (infinite)

bias voltage. Recently, two different groups, presented an ’extension’ of the theory

of Gurvitz, meant to valid for high temperature (T ≫ Γ) and arbitrary bias voltage,

within ’orthodox theory’ [110, 111].

Approach Γ U T Ref.

Landauer-Büttiker any non-interacting any [91, 5]

Landauer-Büttiker with DFT any self-consistent T > TK [112, 113]

slave boson mean field any infinite U T ≪ TK [94, 96]

Equation of motion any self-consistent T & TK [114, 115]

Hartree approximation any first or T > TK [29, 30]

in U and beyond higher order [102, 103]

Orthodox theory first order any T ≫ Γ [27, 26]

Our diagrammatic technique higher order any T & Γ [9, 10]

’Gurvitz approach’ any any T = 0 [106, 107]

Table 3.1: A simplified overview over the validity regime of different approaches

describing mesoscopic transport (current and/or shot noise). Note that all the-

ories can describe arbitrary finite bias situations except the ’coherent transport’

approach of Gurvitz, which is strictly valid only at infinitely large bias.

In Tab. 3.1 a somewhat simplified overview over the different theories (allowing to

calculate current and shot noise) and validity of parameter regimes is given. An ex-

act treatment of interaction, while considering an intermediate coupling regime and

an arbitrary finite transport situation is provided by our diagrammatic technique, as

introduced in the following.

In the following we present a theory for current and shot noise in mesoscopic systems

(e.g. quantum dots or molecules), derived within a diagrammatic technique. We start

with a short discussion of the extreme limits of the coupling parameter (strong and

weak), which theories are applied in these cases and what they are able to describe.

We hereby focus on the field of molecular electronics to learn about the difficulties

one has to overcome in order to realistically describe transport through molecules. We

will further motivate why it is interesting and necessary to push a theory towards an

intermediate regime.

The class of Hamiltonians being able to describe the systems we are interested in

is introduced and we discuss in detail the derivation of a current and noise formula

within a diagrammatic technique, which can be interpreted on the Keldysh contour,

and hence allows for a non-equilibrium treatment of the problem. We discuss the range
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of validity of our theory, which we expand order by order in the coupling strength Γ.

The equivalence and advantage of the zero frequency shot noise formula to the finite

frequency noise is discussed and a way for a description of higher order correlators

(as calculated within full counting statistics) will be shown. The inclusion of coherent

processes allowing to describe delocalized general systems is discussed at the end.

3.1 Strong vs. weak coupling

Theoreticians working in the field of molecular electronics are interested in a theory

describing electronic transport through single molecules or molecular layers adequately.

However, there are two main difficulties making this problem particularly hard.

Figure 3.1: Illustration of the independent parts of the metallic gold electrodes

and the molecule, before building a molecular device. The isolated system parts

are well understood.

First, transport takes place through a hybrid system, consisting of mostly metallic

electrodes and a semiconducting molecule (i.e. a system with a gapped excitation

spectrum). Bringing these systems into contact, interface physics like charge transfer

and the resulting barriers as well as the possibility of Coulomb blockade complicate

matters, since transport is strongly influenced by these effects. Therefore, knowledge of

the separated system parts (molecule and electrodes) in general is not by itself sufficient

to describe transport through the combined system.

Second, one needs to know more of the molecular electronic structure than necessary for

the description of thermodynamic or equilibrium properties. To describe transport, one

needs to know the true single-particle excitation spectrum of the molecule in contact

to the electron reservoirs of the electrodes. These are out of equilibrium, due to the

applied bias Vb.



38 CHAPTER 3. THEORY

This is illustrated, when considering the situation as sketched in Fig. 3.1, where two

gold (Au) electrodes on a SiO2 substrate are shown, separated by a gap of size about

2 nanometers. Above the gap a molecule is approaching the electrodes. Protection

groups prevent unwanted chemical reactions to take place. The choice of thiol (S) as

connection groups is due to chemical feasibility and stability considerations, since Au-S

is a strong chemical bond and hence allows reproducible measurements in experiment.

The electronic structure of the three separated parts (left electrode, right electrode and

the molecule) is indicated in Fig. 3.2. The electrodes can be considered as ’Fermi seas’

of electrons with a continuous density of states filled to the corresponding chemical

potential (Fermi energy).

µ L=0 µ =0R

Other
Occupied 
MOs

Other

MOs

HOMO

HOMO LUMO Gap

∆ε

Unoccupied 

LUMO 

LUMO +1

Figure 3.2: Sketch of the isolated systems as illustrated in Fig. 3.1: metallic elec-

trodes, with chemical potentials µL and µR (considered as non-interacting elec-

trons) and the molecules, with molecular orbitals separated by an energy ∆ε (cal-

culated from quantum chemical calculations).

The molecule in isolation is a finite quantum system and has a spectrum of discrete

quantum states (Molecular Orbitals, MOs) that are either occupied or unoccupied.

For simple organic molecules, the MOs are occupied by two electrons (spin up and

down) up to the Highest Occupied MO (HOMO). All MOs above the HOMO are

unoccupied, starting with the Lowest Unoccupied MO (LUMO). Between the HOMO

and the LUMO the electronic spectrum has a gap (HOMO-LUMO gap) that can be

associated to the light absorption spectrum of the molecule in isolation, since the lowest

energy process for absorption of a photon would be an excitation where one kicks an

electron out of the HOMO and deposits it in the LUMO. The electronic structure of

the nanosize organic molecule can be calculated by means of quantum chemistry.

If the molecule approaches the gap between the electrodes, the thiol groups (S) prefer a

covalent bond to the gold atoms of the electrodes. The protection groups are removed
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and will diffuse away. The new situation is depicted in Fig. 3.3. Now the molecule is

bound covalently to both electrodes, meaning that the formerly separated electronic

systems are coupled. The electrodes with a cross section of 20-50nm are huge compared

to the molecule of nanometer size. The different components interact with each other

in many complex ways. Field effects, screening, dielectric effects, vibrations, electro-

mechanical effects and relaxation via electromagnetic radiation all can play a role.

Au Au

electrodes

molecule

S S

substrate

SiO2

Figure 3.3: The molecule approaching the gap between the electrodes (Au) is

bound covalently to the electrodes via the thiol groups (S).

Which of these effects takes the dominant role in an experiment is almost impossible

to establish without making use of theoretical studies. The importance of different

effects, however will be mainly determined by the way the different parts of the systems

couple together. To understand this, we consider for simplicity three parameters:

the coupling strength Γ, the level (molecular orbital) spacing ∆ε and the charging

energy EC . Depending on the strength of the coupling (compared to the other energy

parameters) two extreme scenarios of transport can be considered: a strong or a weak

coupling situation.

3.1.1 Strong coupling

If the molecule-electrode coupling is strong (i. e. Γ >> ∆ε, EC) the combined system of

electrodes and molecule can lower its free energy by hybridizing states of the electrodes

and the molecule. From the point of view of the molecular states, this means that the

formerly sharp quantum states become broadened, i.e. they acquire a finite life time, as

electrons in the new hybrid states will spend some time in the electrode and not on the

molecule. A sketch of this situation is given in Fig. 3.4. In addition to the broadening,

there will be a (differential) shift of the molecular orbitals due to the fact that in contact

a spatially uniform electrochemical potential will be established. This results in charge

transfer (typically from the electrode to the molecule) and a corresponding electrostatic

potential at the interface region, similar to a Schottky barrier at semiconductor-metal
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interfaces. The electronic transport in this situation can be understood by scattering

theory, in the sense that the current is carried by scattering states that extend from the

left electrode over the molecule into the right electrode. This is the Landauer approach

we have discussed in the last chapter. Because of the coherent quantum states that

span the entire system, we call this scenario the coherent transport picture.

µ L=0 µ =0R

2 Γ

A(E)

(HOMO −1)

(HOMO)

(LUMO)

E

Figure 3.4: Sketch of a strong coupling situation of the molecule to the electrodes.

Formally sharp quantum states are smeared out to a continuous density of states

A(E).

Simplistically, the current can be understood as a product of a transmission rate and

an effective continuous density of states on the molecule as depicted in the figure above.

As the electrochemical potential will often lie in the region of low density of states that

was formerly the HOMO-LUMO gap, the conductance G(Vb) = ∂I(Vb)/∂Vb will be low

at small bias. As the bias is increased, at some bias a resonance due to the broadened

molecular orbital will be captured by the bias window. The current will increase

rapidly and the conductance will show a peak. If one ignores the influence of the

bias on the electronic states, the conductance peak will show at a bias approximately

twice the energy difference of the electrochemical potential and the closest resonance

(typically, but not always, the resonance related to the former HOMO). Naturally,

the problem is how to compute the transmission function in a quantitative way. The

transmission function can be expressed in terms of non-equilibrium Green functions.

Nowadays still the best method to compute these Green functions is based on Density

Functional Theory (DFT). However, DFT was never meant to be used for transport

through nanoscopic systems. It is by now well known that its application to transport

has intrinsic shortcomings, because the DFT Green functions are by no means assured

to capture all the physics. In general, DFT calculations show a low bias conductance
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that is orders of magnitude too high in comparison to experiment. At larger bias, the

agreement with experiment is qualitatively better, but still insufficient for quantitative

predictions [116, 117, 118, 119, 89].

3.1.2 Weak coupling

Weak molecule-electrode coupling (i. e. Γ << ∆ε, EC) effectively means high tunnel

barriers between the electrode and (parts of) the molecule. In this case one can ignore

to first approximation the broadening of the molecular states, so the orbitals remain

well defined and discrete states [120]. This is illustrated in Fig. 3.5. Electrons spend

Other
Occupied 
MOs

µ L=0

Other

MOs

Barrier
Tunnel

Barrier
Tunnel

HOMO

HOMO LUMO Gap

µ =0R

∆ε

Unoccupied 

LUMO +1

LUMO 

Figure 3.5: Sketch of a weak coupling situation of the molecule to the electrodes.

The molecular orbitals remain discrete quantum states.

enough time on the molecule for charging effects to become important. The transport

can be described as a sequence of incoherent hops of single electrons on and off the

molecule. Due to the dominant interaction effects the Landauer approach breaks down

here. We call this scenario the (incoherent) tunneling transport picture. The theory

usually applied in this scenario has the name ‘orthodox theory‘. It computes transport

in a perturbative expansion to first order in the coupling Γ, which is nothing but the

golden rule approximation. Semiquantitative calculations of molecular transport with

this theory have been performed for the current in Ref. [121].

At first glance, not much has changed from the physical picture of transport described

above for strong coupling. One still would expect low (exponentially small) conduc-

tance at small bias and a rapid rise of the current and a peaked conductance as soon as
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the first resonance (that is now very close to the molecular state of the separated com-

ponents) is captured by the bias window. However, this picture almost certainly fails

for the molecules of interest in the weakly coupled situation. The underlying reason

for this failure is the phenomenon of ’Coulomb blockade’, also known from transport

through mesoscopic quantum dots [51, 122]. To understand this, consider an initially

electrically neutral island, somehow isolated from its environment. Little work is re-

quired to bring an electron on the island. The occupied island, with charge e, however

produces an electric field. Therefore, an additional electron has to overcome a force to

occupy the island. The energy needed, to further charge the island is called charging

energy

EC =
e2

2C
, (3.1)

with C being the island capacitance. For an integer number N of excess charges

(Q = Ne) and Qg = nge = CVg (since a gate voltage allows to tune the charge

number) we can write the total charging energy generally as

Ech(N, ng) = EC(N − ng)
2. (3.2)

It is obvious, that ng can be tuned continously, where the ground state energy will

always take a minimal value. This leads to the fact, that for temperatures and bias

voltages small compared to EC , the number of island electrons N will be a fixed

integer, as long as ng is away from half-integer values. As an example take ng ∼ 0,

than the energy difference for the charge states N = 0 and N = 1 is about EC , whereas

for ng ∼ 1/2 the difference is zero. In the first case neither energetically (bias) nor

thermally the charge state can be changed, whereas in the second case it is possible.
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Figure 3.6: An example for a sequential tunneling process. At finite bias a single

electron hop leads to an occupied molecular orbital (level). Double occupancy

would be possible only at much larger bias due to the Coulomb repulsion, although

the level is already in the bias window defined by the chemical potentials.

For a weak coupling situation considered here, the quantized charge e therefore leads to

a gap due to the charging energy, blocking the transport through the island. Applying
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methods that work well in a strong coupling picture (using e.g. mean field theories),

an average number of charges is predicted to occupy the island that generally will be

a fraction of e. A small but finite current would be the consequence, in contradiction

to the blocking effect explained above. An intuitive picture of this blocking can be

given when considering the kind of processes being dominant in the weak coupling

regime. In Fig. 3.6 an example is given for such an incoherent single electron hop

on a molecular orbital. Here, a finite bias situation is indicated, where a sequential

tunneling process from the left reservoirs leads to an occupied orbital. Another hop

into the right reservoir would be allowed next, but double occupancy is forbidden for

sufficiently large Coulomb interaction.

Assuming the single level to lie below the equilibrium Fermi energy and considering

an arbitrary small bias voltage, the ground state will be a singly occupied one. Trans-

port will be suppressed exponentially unless the bias is sufficient to further charge (or

uncharge) the system.

3.1.3 Why co-tunneling?

The theoretical approaches to the strong and weak coupling limits can be viewed as

nearly orthogonal. Whereas transport in the coherent transport picture is dominated

by the contact, it is dominated by the interactions on the molecule in the tunneling

transport picture. As we have seen in the last chapter, the presence and relevance of

interaction effects is quite probable in quantum dots as well as molecules. On the other

hand, an extremely weak coupling situation (e.g. as often studied in experiments with

quantum dots), can not be guaranteed to be present in experiments with molecules,

but a strong coupling scenario is doubtful as well. A theory taking into account dy-

namic interaction effects, while describing an intermediate coupling regime might be

the adequate candidate to describe transport through molecular devices.

An intermediate coupling regime can be described theoretically by considering higher

order contributions (second order in Γ) in tunneling processes. An example of such co-

tunneling processes is given in Fig. 3.7. An initially unoccupied orbital can be charged

with an electron and uncharged again, thus allowing an electron to cross the molecule

via a virtual intermediate state. The same can happen for a hole with an occupied state.

Since for such processes no energy is needed, they take place even at arbitrarily small

bias voltage. Processes that excite the molecule leading an electron effectively into an

energetically higher lying orbital, are possible at larger bias, corresponding to energy

difference. The first kind of processes are called elastic co-tunneling processes (left

side of Fig. 3.7) and the others inelastic co-tunneling processes (right side of Fig. 3.7).

The co-tunneling processes will dominate in the Coulomb blockade regime, where the

first order, sequential tunneling processes are exponentially suppressed. Current in the
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Figure 3.7: An example for an elastic (left side) and an inelastic (right side) co-

tunneling process. Even at arbitrary small bias, tunneling into the right reservoir

is possible via a virtual intermediate state. Elastic processes can occur even at

vanishing bias, since they do not require any energy. Inelastic processes require an

energy, corresponding to the difference of the two energy levels and take place at

the corresponding bias.

co-tunneling regime has been calculated in Refs. [123, 124, 125, 126], for example.

The reasons why co-tunneling is interesting or relevant to be studied in transport

through molecules and quantum dots can be answered now.

First, in comparison to much better controlled quantum dot structures (which provide

the possibility to test theoretical predictions with experimental results), co-tunneling

current and shot noise may adequately describe realistic transport situations in molec-

ular devices.

Second, co-tunneling effects dominate in the Coulomb-blockade regime, where ’orthodox

theory’ fails to describe the physics of transport. Since shot noise is more sensitive to

various processes, we expect promising information can be extracted from the noise

or Fano factor. But even in the regime of finite transport, under certain conditions,

higher order tunneling effects may become important. This will be the case, e.g. when

asymmetric coupling parameters suppresses sequential tunneling, whereas co-tunneling

processes can still occur.

Third, even the behavior of transport at bias voltages around the excitation energies,

might be altered, as the interplay of first and second order processes leads to step struc-

tures in the current and noise characteristics, which can provide further information

on system parameters.

Last, the additional consideration of co-tunneling processes provides a complete picture

of transport being applicable to the whole bias regime. While of no consequence in

itself, it is one of the intellectually most satisfying points of this work to have achieved

this.



3.2. HAMILTONIAN 45

3.2 Hamiltonian

For the description of the transport through a nanoscale island like a quantum dot or

a molecule, we consider a generalized Anderson impurity model. In order to keep our

discussion as clear as possible, we will limit ourselves to the language of quantum dots

in the following. The standard Hamiltonian can be written as H = H0 + HT, where

H0 describes the decoupled system and HT the tunneling between the leads and the

island. The decoupled system consists of noninteracting electrons in the left (L) and

right (R) leads (in general r = L,R) and interacting electrons in the dot (D)

H0 = HL +HR +HD, (3.3)

with

Hr =
∑

kσ

εkσra
†
kσrakσr (3.4)

and

HD =

(

∑

ijσ

εijσc
†
iσcjσ +

∑

ijklσσ′

Vijklc
†
iσc

†
jσ′ckσ′clσ

)

. (3.5)

The Fermi operators a†kσr, (akσr) and c†iσ, (ciσ) create (annihilate) electrons in the elec-

trodes and the dot. The energy of the electrons in the reservoirs and the dot are

εkσr (with wave vector k) and εijσ. The two-particle operator in HD, allowing to con-

sider interaction effects, has its most general form with elements Vijkl. The indices

i, j, k, l = 1 . . .N are due to N dot-levels and σ describes the spin state (spin ↓ or ↑).
For appropriate choices of these elements capacitive effects with a charging energy as

well as Coulomb interaction effects for double occupancy of electronic levels can be

described. This allows for a study of models like the Anderson impurity model, the

Hubbard model and others.

Tunneling between the leads and the quantum dot levels is modeled by

HT,r =
∑

ikσ

(

tkr
iσa

†
kσrciσ + h.c.

)

(3.6)

with HT =
∑

r HT,r and tkr
iσ being the tunneling matrix elements. These parameters

describe the coupling of the dot system to the electronic environment and hence lead to

a finite lifetime τ of the dot states, which in turn defines an intrinsic level broadening

(line width) Γ = ~/τ . The coupling strength to the reservoirs is related to these

amplitudes via

Γiσ
r (ω) =

2π

~

∑

k

|tkr
iσ |2δ(ω − εkr), (3.7)
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which is obtained from golden-rule arguments. Assuming a constant density of states

in the two electrodes and tunneling elements independent of k, we obtain the energy

independent coupling Γiσ
r = 2π|triσ|2ρe.

So far, we have specified a model allowing for a transport description through a small

island with an arbitrary complex electronic structure. If we want to include further

effects like vibration, relaxation, etc. effects we may couple additionally to a bosonic

bath (e.g. of photons or phonons).

We therefore add a Hamiltonian

HB =
∑

q

ωqd
†
qdq (3.8)

and

HB−D =
∑

qσij

gij
q (d†q + dq)c

†
iσcjσ (3.9)

where d†q, dq are the corresponding Bose operators. The term HB describes the un-

perturbed boson bath (with wave vector q) and HB−D the interaction with the dot

structure, where a coupling is given by constants gij
q . Charge relaxation and excitation

due to bosons is given for i 6= j, whereas “boson-assisted tunneling” is described when

choosing i = j. [Such a diagonal term would lead to additional steps in the I-V when

the boson bath has a discrete spectrum [127, 128, 129].] Analogously to the fermionic

coupling strength we define a coupling

αij(ω) =
2π

~

∑

q

|gi,j
q |2δ(ω − ωq), (3.10)

where again we assume the amplitudes gij to be independent of q. This allows us to

rewrite αij(ω) = 2π|gij|2ρb(ω), with ρb(ω) being the density of states of the bosonic

bath.

In chapter 4 we will discuss various models which are special choices of the general

Hamiltonian presented here. A further specification of the various coupling constants

will be made as well. However, our theory can deal with its general form. All transport

properties of interest are expressed in terms of self-energy diagrams (transition rates)

which are calculated via diagrammatic rules. These rules are discussed in Appendix

A and account for all features described by the general Hamiltonian H = H0 + HT.

Note, that by inclusion of a bosonic bath we rewrite the Hamiltonian of the decoupled

system as H0 = HL + HR + HD + HB, and the one, containing the parts which are

treated perturbatively as HT = HT +HB−D.
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3.3 Diagrammatic technique

In the following we present a general transport theory which is based on a real-time

diagrammatic approach Ref. [129, 130, 131, 132]. The basic idea of the diagrammatic

technique is to integrate out all reservoir degrees of freedom and thus end up with a

formally exact kinetic equation for the reduced density matrix of the dot states in the

quantum dot. The reduced density matrix contains a series of irreducible blocks, which

are identified as self-energies or transition rates, and can be calculated straightforward

by applying diagrammatic rules (these will be presented in the appendices).

This theory allows to perform a systematic perturbation expansion of the current and

shot noise (current noise) or even higher correlators. The great advantage compared to

other theories (e.g. non-equilibrium Green functions techniques) is the description of

all transport properties in terms of such self-energy diagrams (transition rates), which

allow to study systems of higher complexity, such as described by the Hamiltonian

introduced before, without additional extensions.

3.3.1 Keldysh contour and Diagrams

We want to calculate the quantum-statistical expectation value of an operator A at

time t [133], which is given by

〈A(t)〉 = Tr(ρ0A(t)H) = Tr(ρ(t)A), (3.11)

with A(t)H = exp[iH(t − t0)]Aexp[−iH(t − t0)] being the operator in the Heisenberg

picture with respect to the initial time t0 and ρ0 = ρ(t0). Using permutation under

the trace leading to A in the Schrödinger picture, we write the time evolution of the

density matrix

ρ(t) = exp[−iH(t− t0)]ρ(t0)exp[iH(t− t0)], (3.12)

which governs all transport properties. If we assume, that the initial density matrix

factorizes into parts of the dot D and leads electrons r = L,R (fermionic bath), we

may write

ρ0 = ρD
0 ρ

L
0ρ

R
0 or ρ0 = ρD

0 ρ
L
0ρ

R
0 ρ

B
0 , (3.13)

when coupling additionally to a bosonic bath B. We consider the leads to be large reser-

voirs of thermally equilibrated noninteracting electrons with fixed chemical potentials

µr and µD = 0. The leads thus can be described by Fermi functions fr(ω) and the

density matrix reads

ρr
0 =

1

Zr
0

e−β(Hr−µrNr), (3.14)
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with the inverse temperature β = 1/kBT and the number operator Nr =
∑

kσ a
†
kσrakσr.

The normalization factor Zr
0 is determined by trρr

0 = 1. Correspondingly the same can

be written for ρB
0 , with the bosonic free Hamiltonian, describing the bosons by Bose

functions nb(ω)

ρB
0 =

1

ZB
0

e−βBHB . (3.15)

The remaining part of the dot electrons is not described by equilibrium reservoirs.

We assume, its initial distribution to be diagonal in some basis |χ〉, which labels the

many-body dot states, and includes all correlations within the island. We write

ρD
0 =

∑

χ

pinit
χ |χ〉〈χ|, (3.16)

where probability conservation yields
∑

χ p
init
χ = 1. In the stationary limit, when long

enough time has passed by, such that the system has forgotten its initial distribution,

it becomes obvious that physical quantities do not depend on the choice of pinit
χ . We

denote the initial time t0 (which later will be shifted to minus infinity), when we

adiabatically switch on tunneling between the reservoirs and the dot.

We change to the interaction picture with respect to H0 and find

A(t)H = T̃ exp



−i
t0
∫

t

dt′HT(t′)I



A(t)IT exp



−i
t
∫

t0

dt′HT(t′)I



 , (3.17)

where T and T̃ denote the time and anti-time ordering operators. We further write

the integrals as one contour integral over the Keldysh contour, where the time t′ runs

forward from t0 to t (where the operator A acts) and then backwards from t to t0. This

yields

〈A(t)〉 = tr



ρ0TKexp



−i
∫

K

dt′HT(t′)I



A(t)I



 , (3.18)

where we introduced the Keldysh time-ordering operator TK , which orders all following

operators along the Keldysh contour, such that the one with the later time along the

contour appears at a further right position. In a diagrammatic language, the Keldysh

contour is represented by horizontal lines running from the left to the right (upper)

and then back to the left (lower), as illustrated in Fig. 3.8 (details to be explained

in the following). Since the time now labels the physical time and additionally the

information, on which part of the contour the corresponding operator lies, we can

understand such diagrams (as Fig. 3.8) as real-time expansions of the reduced dot

system.
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This becomes more transparent, when we further manipulate Eq. 3.18 to

〈A(t)〉 =
∑

χ

pinit
χ 〈χ|ΠA(t)I |χ〉, (3.19)

where we summarized

Π = trLtrRtrB



ρL
0 ρ

R
0 ρ

B
0 TKexp



−i
∫

K

dt′HT(t′)I







 . (3.20)

and inserted the above defined initial density matrix. When expanding the exponential

in Eq. 3.20, we get

TKexp



−i
∫

K

dt′HT(t′)I



 = (3.21)

∞
∑

m=0

(−i)m

t1>t2>...>tm
∫

K

dt1

∫

K

dt2...

∫

K

dtm TK [HT (t1)IHT (t2)I ...HT (tm)I ] .

The following points need to be made:

1) The Keldysh time-ordering operator in Eqs. 3.19 with 3.20 acts on all operators on

the right, including A, which puts this operator in infinite many possible configurations

(between the tunneling Hamiltonians) on different positions in time, located on the

Keldysh contour. Both types of operators HT and A are diagrammatically represented

by vertices (see Fig. 3.8), which are either internal (for HT ) or external (for A) ones.

2) Instead of only one external vertex, there may also be arbitrary many vertices Ai

(with i = 1..n), describing the n-th correlator (here we describe the situation with

n = 1). As an example, the second correlator with n = 2 is required to describe the

shot noise, as discussed in the following. Again, each of these operators will have to

be placed at all possible positions between the tunneling Hamiltonians.

3) All operators HT and A (i.e. for A representing the current operator) contain

combinations of dot and reservoir operators (ciσ, akσr, dq and the creation operators

respectively). The only part of the system, which is not in equilibrium is the dot.

The reservoir operators can be separated therefore from the dot operators (this will

give a sign due to exchanging operators) and contracted into pairs by applying Wick’s

theorem. Wick’s theorem in this case holds, since the Hamiltonian H0 is bilinear in the

operators of the reservoirs. Contractions between pairs of field operators are included

fromHT as well as from A in general. This allows to integrate out the reservoirs degrees

of freedom leading to Fermi and Bose functions. For the dot operators, the Schrödinger

equation has to be solved exactly. These operators act on the many-body dot states.
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4) Thus Eq. 3.20 (without external vertices) can be understood as the reduced propa-

gator of the dot system, which describes time evolution of the system via coupling to

the reservoirs.

Another way to write down the matrix elements, describing the non-equilibrium time

evolution of the density matrix from dot state χ1 at time t0 forward to state χ′
1 at time

t and then backward from χ′
2 to χ2 is

Π
χ1,χ′

1

χ2,χ′
2

= 〈χ2| [Π(|χ′
2〉〈χ′

1|)(t)I ] |χ1〉 = (3.22)

trLtrRtrB



〈χ2|T̃exp



−i
t0
∫

t

dt′HT(t′)I



 |χ′
2〉〈χ′

1|T exp



−i
t
∫

t0

dt′HT(t′)I



 |χ1〉





This allows us to understand Fig. 3.8, which visualizes the propagation. The upper

and lower lines describe the forward and backward time propagation along the contour,

where tunneling vertices, HT , change the many-body dot states χ, which are indicated

in our example for a single level system with states empty (0), spin ↑, spin ↓ or doubly

occupied. The vertices are connected in pairs (Wick’s theorem) by tunneling lines,

corresponding to reservoirs r = L,R. Since with each vertex a tunneling amplitude t

can be associated, a tunneling line will provide a factor Γ ∝ |t|2. $%s s s s s ss ss s s s-� -� -� ������ ����� AAAAA�����'$&%� R qI U�L R L R LR" d # d # 0 "
d#0#d"

Figure 3.8: An example for the time evolution of the reduced density matrix. The

upper and lower line represent the forward and backward time propagation along

the Keldysh contour, respectively. Tunneling lines correspond to the reservoirs

L,R connecting pairs of vertices. The resulting changes between the dot states are

indicated (here four different, as would be relevant for a single level model).

For the following discussion, we assume the reduced density matrix to be diagonal

(χ1 = χ2 = χ and χ′
1 = χ′

2 = χ′). For the case of the Anderson model, e.g. conservation

of spin and transverse channel number guarantee that the reduced density matrix stays

diagonal for all time, although it is not necessarily the case in general. The general

case of a non-diagonal density matrix will be discussed in chapter 3.8.

Considering the different kinds of tunneling lines in Fig. 3.8, we see, that doing a

vertical cut at a certain time, we may either cut zero, one, two, ... up to infinitely
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many tunneling lines. This allows us to rewrite the full propagation as a sequence

of irreducible blocks (self-energy) Wχ′χ(t′, t) containing one or more tunneling lines.

They are associated with transitions from state χ at time t to state χ′ at time t′. Parts

without tunneling lines describe a free propagation and are written as Π(0) = 1 for the

diagonal density matrix. This leads to the Dyson equation for the propagator

Π(t′, t) = 1 +

t′
∫

t

dt2

t2
∫

t

dt1 W(t2, t1)Π(t1, t) (3.23)

where the bold face indicates matrix notation related to the dot state labels (for N

states χ = 1..N this defines aN⊗N matrix). To be more general we use a time t instead

of t0, which is associated with the initial time. Additionally, since in matrix notation

we read from right to left, the order of times is the other way around, compared to the

diagrammatical representation. Eq. 3.23 is illustrated in Fig. 3.9.-
�

-
�

-
�

-
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-
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-
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Figure 3.9: Illustration of the Dyson equation, which describes an infinite series of

irreducible self energy diagrams W interrupted by free propagators Π(0). The full

propagator Π thus describes a reducible diagram.

For the irreducible blocks, containing one or more tunneling lines, an illustrative exam-

ple is shown in Fig. 3.10. The simplest diagram containing one tunneling line describes

the transition from a state with spin ↑ into a doubly occupied state, via an electron

hopping onto the dot out of the left reservoir. Since the tunneling line provides a fac-

tor Γ, the process describes a first order, sequential tunneling process. A co-tunneling

process described by two tunneling lines respectively, is shown as well. Higher order

contributions (k > 2) in a perturbative expansion of the coupling strength are de-

scribed diagrammatically by blocks containing more tunneling lines. In general we can

write W =
∑∞

k=1 W(k).

Note that diagrams with k lines may contain 0 to k tunneling lines and k to 0 boson

lines. This is trivial in lowest order (since only diagrams with either one tunneling

or one boson line appear) but for higher order contributions (e.g. second order) this

means, that two tunneling lines, one tunneling and one boson line or two boson lines

may be present. All kinds of diagrams have to be regarded.
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As discussed above, k Fermi or Bose functions, together with k couplings Γiσ
r and αij

will appear, describing the structure of the tunneling and boson lines. The 2k integrals

over times (associated with vertices) can be reduced to (2k − 1), when choosing the

final time to be zero. Propagation between different times t − t′ is described by an

exponential exp[−iεχ(t− t′)] with the dot state χ, being realized between two vertices.

Changing from time space to energy space, via a Laplace transform, we obtain (2k−1)

resolvents of the kind 1/(−iεχ+η), where η → 0+ is a convergence factor, and accounts

for an adiabatic switching on of the perturbation HT . At the end k integrations due

to the number of lines remain to be carried out over the combined functions (see also

the discussion of diagrammatic rules in time and energy space in appendix A).
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Figure 3.10: An example of an irreducible self-energy diagram with one, two,

etc. tunneling lines, connecting the dot with reservoirs r = L,R. The number of

tunneling lines is directly related to the order of Γ in a perturbation expansion.

A crucial point, which simplifies calculations, is the use of symmetries, allowing to

reduce the number of diagrams tremendously until finally only really topologically

different diagrams remain. One example is the fact, that when changing all directions

of lines in a diagram and reflecting it horizontally, the complex conjugated is obtained.

This is known as the mirror rule. Another example is, that when changing the position

of the rightmost vertex HT in a diagram from the upper to the lower branch of the

contour (or vice versa), the sign of the diagram changes. This can be summarized in

the sum rule
∑

χ′ Wχ′χ = 0.

Since this is not the place to go into further details, we refer to Refs. [129, 130, 131, 132],

where the rates W are exactly related to self-energies Σ via Σχχ′ = iWχ′χ. The reason

for our new choice is the desire to use purely real objects (the rates Σ are mostly purely

imaginary), making an interpretation as transition rates more transparent.

So far, we have developed an approach to determine the self-energies diagrammatically

in a straightforward way. If all transport properties (e.g. current, shot noise, etc.) we

are interested in can be expressed in terms of diagrams W, it will be a question of

book keeping only to calculate all contributions.



3.3. DIAGRAMMATIC TECHNIQUE 53

3.3.2 Master equation and stationary probabilities

When taking the long-time limit, i.e. time differences t′ − t larger than the relaxation

time the system approaches the stationary state. It is obvious that the propagator

Eq. 3.23 itself must become stationary, i.e. a constant in time. Thus we have

lim
t0→−∞

Π(t′ − t0) = pst ⊗ eT , (3.24)

where eT = (1, .., 1), and pst is the vector of the stationary probabilities of the dot,

independent of t′ . pst describes the probabilities of the dot to occupy the possible

quantum states χ. Eq. 3.24 can be obtained by taking the derivative of Eq. (3.23)

with respect to t′ and setting the derivative to zero, corresponding to the stationary

state. An arbitrary initial state pinit = limt0→−∞ p(t0) will develop always into the

same stationary state limt0→−∞ Π(0, t0)p(t0) = pst.

To obtain an equation to determine the stationary probabilities pst we first introduce

the Laplace transform of the transition rates W(z) = ~
∫ 0

−∞
dteztW(0, t) with the

definition W = W(z)|z=0+. From Eq. (3.23) we find

Wpst = 0, (3.25)

independent of the initial density matrix (since eTpinit = 1 because of the probability

conservation). As W has a zero eigenvalue, it cannot be inverted (remember the sum

rule eTW = 0). With the normalization condition eT pst = 1 we obtain the stationary

probabilities pst by solving

W̃p
st

= v, (3.26)

where W̃ is identical to W but with one (arbitrarily chosen) row χ0 being replaced by

(Γ, ..,Γ) and v defined by vχ = Γδχχ0
.

For a well-defined perturbation expansion in powers k of the coupling strength Γ we

write W =
∑∞

k=1 W(k), W̃ =
∑∞

k=1 W̃(k), and pst =
∑∞

k=0 pst(k). Since the order in Γ

corresponds to the number of tunneling lines contained in the irreducible blocks, W

and W̃ start with first order in Γ, whereas pst starts in zeroth order. The zeroth-order

stationary probabilities are

pst(0) = (W̃(1))−1v, (3.27)

and higher-order corrections are obtained iteratively by

pst(k) = −
(

W̃(1)
)−1

k−1
∑

m=0

W̃(k−m+1)pst(m) , (3.28)

for k = 1, 2, . . .. The stationary probabilities are thus expressed in terms of blocks

W(k), which are calculated diagrammatically.
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3.4 Current

The current flowing through the barriers r = L,R is defined by the current operator

Îr(t) = −e d
dt
Nr(t), (3.29)

where the time dependence of dot number operator Nr(t) in the Heisenberg picture is

given by the equation of motion d
dt
Nr(t)H = i[H,Nr](t)H = i[HT , Nr](t)H , which leads

to

Îr(t) = −i(e/~)
∑

ikσ

(

tkr
iσ (a†kσrciσ)(t) − h.c.

)

. (3.30)

In order to describe transport, a finite bias voltage enters the difference of the electro-

chemical potentials µr for the left and right leads. For the current we use Î in order to

distinguish from the expectation value I = 〈Î〉. We furthermore define a symmetrized

notation Î = (ÎR − ÎL)/2, which will enable a compact description of the noise and

facilitates an easier calculation when using the diagrammatic technique. Of course, we

could write also Î = ÎR = −ÎL, which holds due to the continuity equation.

The current operator eq. 3.30 represents a possible choice of an operator A, as intro-

duced in section 3.3.1. For a diagrammatic representation of the current, we introduce

a block WI , in which one (internal) tunneling vertex due to HT,r is replaced by an

(external) one due to Îr. This leads to additional diagrammatic rules, accounting for

prefactors and signs, which are given in appendix A. The diagrammatic approach now

allows for a visualization of the different expressions we will encounter (see Fig. 3.11).

The objects are indicated here in the order as they appear in the formulas due to

matrix notation.

WI Π
t t’ t 0

Figure 3.11: Visualization of the blocks contributing to the current. For t0 → −∞
and turning to the energy representation, the blocks take the form WIpst ⊗ eT .

The current (expectation value) in time-representation is written as

I(t) = lim
t0→−∞





e

2~

t
∫

t0

dt′eT
~WI(t, t′)Π(t′, t0)p(t0)



 (3.31)
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In the limit t0 → −∞ we are free to chose I(t) = I(0) = I. However, in our discussion

of the shot noise (next section), we will have to manipulate expressions while keeping

t0 at a finite value. If a sequence of transition rates WI interrupted by propagators

Π is considered, one has to take care of the exact time ordering of the objects. An

exact treatment is possible only, if the time t0 is taken to be finite until this has been

achieved.

For the current this is uncritical, since as t0 → −∞ the propagator in Eq. 3.31 leads

to time-independent stationary states, such that the Laplace transform of the only re-

maining object WI(t, t′) can be performed, choosing t = 0 because of time-translational

invariance. Hence, for the current we find

I =
e

2~
eTWIpst (3.32)

where we used eT pinit = 1 again. Expanding this expression order by order in the

coupling strength Γ, we obtain

I(k) =
e

2~
eT

k−1
∑

m=0

WI(k−m)pst(m) (3.33)

for k = 1, 2, . . ., and the total current is I =
∑∞

k=1 I
(k). The factor 1/2 corrects

for double counting of the current vertex being on the upper and lower branch of the

Keldysh contour. Since the stationary probabilities are expressed in terms of irreducible

blocks W(k), the current is expressed by rates W(k) and WI(k) only.

In first order the current reads

I(1) =
e

2~
eT WI(1)pst(0), (3.34)

and in the second order corrections

I(2) =
e

2~
eT (WI(2)pst(0) + WI(1)pst(1)). (3.35)

We will present results in the next chapter, which have been derived by calculations up

to second order, with a current I = I(1) + I(2). The stationary probabilities needed to

compute the current up to second order are determined from Eqs. 3.27 and 3.28. The

only task remaining is the calculation of rates W(1),WI(1) in first and W(2),WI(2) in

second order.

An equivalent expression to Eq. 3.32 in terms of self-energies Σ has been derived in

Ref. [132]. It has been shown there that the current can be expressed in terms of greater

and lesser single-particle Green functions (C>, C<) as well, which again is equivalent

to the current formula derived in a non-equilibrium Green’s function formalism in

Ref. [22]. We will explain later, why there is no trivial extension of this to the shot

noise, where two-particle Green functions appear.
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3.5 Zero frequency shot noise

We want to expand the diagrammatic approach to describe the shot noise, which is

related to the current-current correlations in time. When taking the zero frequency

limit of the definition from chapter 2.1, we find

S =

∞
∫

−∞

dt〈δÎ(t)δÎ(0) + δÎ(0)δÎ(t)〉, (3.36)

with δÎ(t) = Î(t) − 〈Î〉, which we expand to

S = 2

0
∫

−∞

dt
[

〈Î(t)Î(0) + Î(0)Î(t)〉 − 2〈Î〉2
]

. (3.37)

Due to our symmetrized definition of the current, a compact description of the noise is

possible, which consists of the parts S = (SLL + SRR −SLR − SRL)/4. This summation

is hidden in the diagrammatic rules, which account for the different pre-factors.

W Π
t’ t 0

II

0

Figure 3.12: Visualization of irreducible current-current contributing to the noise.

For t0 → −∞ and turning to the energy representation, the contribution takes the

form WIIpst ⊗ eT .

The shot noise involves expectation values of two current operators which either appear

both in a single irreducible block, which we denote by WII , or in two different blocks

WI . In analogy to the current, the first part of the noise (with both current vertices

in one irreducible block) is found to be

SII = lim
t0→−∞





e2

~

0
∫

t0

dt′eT
~WII(0, t′)Π(t′, t0)p(t0)



 (3.38)

where the factor 2 in the above definition has canceled against the correction factor

1/2 for double counting. This expression is visualized in Fig. 3.12 containing a block

WII . The external integration from Eq. (3.37) is taken over the time t at which the

second current operator acts. As the time t is earlier than the time 0 this leads to the
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possibility of arbitrary positions of one current vertex within the block WII . In energy

representation (Laplace transform) we find

SII =
e2

~
eTWIIpst (3.39)

The other part of the noise contains current vertices in two different blocks WI as

visualized in Fig. 3.13. [We note here that the factor 2 from the noise definition

WI Π ΠWI

t’ t 0t’’’ t’’0

Figure 3.13: Visualization of the blocks contributing to the noise part SIΠI . The

propagator between times t′′′ and t′′ takes the stationary form pst ⊗ eT in the long

time limit. Thus the integration over t′′ leads to a divergence.

cancels only once, since for the second object WI acting on the propagator in Eq. 3.40

all positions of the current vertex have to be considered (no double counting).] The

propagator Π(t′′′, t′′) in Eq. 3.40 will approach pst ⊗ eT in the long-time limit. As we

have to integrate over the time t′′, we find this expression to be divergent. We write

the term corresponding to Fig. 3.13 as

SIΠI = (3.40)

lim
t0→−∞





e2

~

0
∫

t0

dt′′′eT
~WI(0, t′′′)

t′′′
∫

t0

dt′′
1

~
Π(t′′′, t′′)

t′′
∫

t0

dt′~WI(t′′, t′)Π(t′, t0)p(t0)



 .

On the other hand, we find from Eq. 3.37 that we still have to subtract the part

SI2 = −4
∫ 0

−∞
dt〈Î(0)〉〈Î(t)〉 which also diverges (being an infinite integral over a con-

stant). The two divergencies must cancel in the final expression for the shot noise. Our

following manipulations will show that they indeed do cancel. Inserting Eq. 3.31 at

the different times we may rewrite this part as

SI2 = (3.41)

−4 lim
t0→−∞

0
∫

t0

dt





e2

4~2
eT

0
∫

t0

dt′′′~WI(0, t′′′)Π(t′′′, t0)p(t0)e
T

t
∫

t0

dt′~WI(t, t′)Π(t′, t0)p(t0)



.

Now Eq. 3.41 is manipulated as follows: we rename t → t′′ and split the domain of

the integral,
∫ 0

t0
dt′′ →

∫ t′′′

t0
dt′′ +

∫ 0

t′′′
dt′′. As we will later let t0 → −∞ we can also use
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Π(t′′′, t0)p(t0)e
T → Π(t′′′, t0) in the middle of Eq. 3.41. Forming the sum of Eq. 3.40

and the first part of the t′′ integral
∫ t′′′

t0
dt′′ of Eq. 3.41, we encounter an object

P(t′′′, t0) =

t′′′
∫

t0

dt′′
1

~
[Π(t′′′, t′′) −Π(t′′′, t0)] (3.42)

that in the limit t0 → −∞ (and by setting t′′′ = 0) is recognized as another Laplace

transform, which we denote by P. P might be called a ”decaying” propagator, as it has

the stationary part of the propagator, i.e. the part that does not decay as t0 → −∞,

subtracted. Due to time-translational invariance the times t′′ and t′′′ in the objects

WI(t′′, t′) and P(t′′′,−∞) can be set to zero allowing for the Laplace transformation.

The idea is to start taking the limit t0 → −∞ at the right side of the expressions

leading to time independent stationary probabilities. The whole sequence of objects

can be shifted in time, since the internal time ordering of the objects is maintained.

Therefore, the Laplace transformation can be taken for one object after the other until

we obtain a term in the form

∼ eTWIPWIpst.

The second part of the time integral
∫ 0

t′′′
dt′′ of Eq. 3.41 simply evaluates to −t′′′. The

t′′′ integral also contains WI(0, t′′′)Π(t′′′, t0). In the limit t0 → −∞ the propagator

Π(t′′′, t0) approaches the stationary probabilities pst, and therefore can be considered

independent of t′′′. The remaining integral over t′′′ reads ~
∫ 0

t0
dt′′′t′′′WI(0, t′′′) (a minus

sign canceled with the minus sign in front of Eq. 3.41). In the limit t0 → −∞ this ex-

pression is written as the derivative of the Laplace transform WI(z) = ~
∫ 0

−∞
dteztWI(0, t)

as ∂WI =
(

∂WI(z)/∂z
)

|z=0+. The t′ integral of Eq. 3.41 has been untouched and eval-

uates to eTWIpst = 〈I〉. Collecting factors, we obtain another noise term of the form

∼
(

eT∂WIpst
) (

eTWIpst
)

that is a product of two scalars (it is derived from 〈I〉2). We can reorganize the terms

to obtain a rather short expressions of the form

SIΠI + SI2 =
e2

~
eTWI

[

PWI + pst ⊗ eT∂WI
]

pst. (3.43)

A central assumption we have to make here, is that the kernels WI (and W since the

same expression will appear again below) decay faster than 1/t2, limt→−∞ t2WI(0, t) =

0 so that the object ∂WI exists. This is the case for the situations we will consider

later, where WI(0, t) decays exponentially with t. The appearance of the object ∂WI

is related to non-Markovian processes and will be discussed below.

The total shot noise Eq. 3.37 can finally be expressed as (S = SII + SIΠI + SI2)

S =
e2

~
eT
[

WII + WI(PWI + pst ⊗ eT∂WI)
]

pst (3.44)
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Before expanding the expressions order by order in Γ, we still have to find an equation

which determines the object

P = lim
t0→−∞

0
∫

t0

dt1
1

~
[Π(0, t1) − Π(0, t0)] (3.45)

from transition rates W. (The introduction of time t1, as opposed to t′, t′′, t′′′ allows

an easier identification of the parts of the Dyson equation we derive the object P

from). We consider again the Dyson-equation Eq. 3.23 for the propagator Π(0, t0).

By changing the integration times and making use of time-translational invariance, we

can write the equation as

Π(0, t0) = 1 +

0
∫

t0

dt1

0
∫

t1

dt2 W(0, t2)Π(t1, t0). (3.46)

We split the domain of the integral
∫ 0

t1
dt2 →

∫ t0
t1
dt2 +

∫ 0

t0
dt2 and add and subtract

once the expression
∫ 0

t0
dt2W(0, t2)

∫ 0

t0
dt1Π(0, t0). In the limit t0 → −∞ we can use

again the Laplace transformation and find

WP = (pst ⊗ eT − 1) − ∂Wpst ⊗ eT . (3.47)

Again we assumed the transition rates to decay fast enough such that limt→−∞(t2W(0, t)) =

0. Since W cannot be inverted we need an extra condition to determine P. The neces-

sary condition is eTP = 0, which follows from the definition of P, the Dyson equation,

and eTW = 0. We rewrite Eq. 3.47 as

W̃P = 1̃(Q + R) (3.48)

with the objects Q = pst ⊗ eT − 1, R = −∂Wpst ⊗ eT and 1̃ being the unit matrix,

where one (arbitrary) row χ0 has been set to zero. We now have all parts in place to

expand P and the shot noise in powers of Γ. For P, we observe that P starts in order

Γ(−1) as

P(−1) =
(

W̃(1)
)−1

Q(0) (3.49)

(Q(0) = pst(0) ⊗ eT − 1). Higher orders k = 0, 1, ..., can be computed from

P(k) =
(

W̃(1)
)−1

[

1̃
(

Q(k+1) + R(k+1)
)

− S(k+1)
]

(3.50)

where

Q(k+1) = (pst(k+1) ⊗ eT ), (3.51)
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R(k+1) = −
k
∑

m=0

(∂W(k−m+1)pst(m) ⊗ eT ) (3.52)

and

S(k+1) =
k−1
∑

m=−1

(W̃(k−m+1)P(m)). (3.53)

Finally, we expand the noise Eq. 3.44 to

S(k) =
e2

~
eT

k−1
∑

m=0

[

WII(k−m) + X(k−m)
]

pst(m) (3.54)

with

X(k−m) =

k−m
∑

m′=1

(

k−m−m′−1
∑

m′′=−1

WI(k−m−m′−m′′)P(m′′)WI(m′)

)

(3.55)

+

k−m
∑

m′=1

(

k−m−m′−1
∑

m′′=0

WI(k−m−m′−m′′)pst(m′′) ⊗ eT∂WI(m′)

)

for k = 1, 2, . . .. Again, the full shot noise is given by S =
∑∞

k=1 S
(k). The set of matrix

equations Eqs. (3.27, 3.28, 3.33, 3.49, 3.50, 3.54 and 3.55) constitute the starting point

for calculations which are done in a perturbative expansion. Since in the next chapter

we will discuss results, based on calculations of the current and shot noise up to second

order, we write down the first and second order contributions to the noise explicitely.

In first order in Γ (sequential tunneling) this noise simplifies to

S(1) = (e2/~) eT
(

WII(1) + WI(1)P(−1)WI(1)
)

pst(0), (3.56)

and all contributions involving the derivatives ∂W and ∂WI disappear as a conse-

quence of the fact that W starts at order Γ, pst at Γ0, and P at Γ−1. For the second

order corrections we find

S(2) =
e2

~
eT
[

(WII(2) + X(2))pst(0) + (WII(1) + X(1))pst(1)
]

(3.57)

with

X(1) = WI(1)P(−1)WI(1)pst(1), (3.58)

X(2) = WI(2)P(−1)WI(1) + WI(1)P(−1)WI(2) (3.59)

+WI(1)P(0)WI(1) + WI(1)(pst(0) ⊗ eT )∂WI(1),
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and objects P(−1) and P(0) being determined by Eqs. 3.49 and 3.50. Again, it remains to

calculate the rates W(1), ∂W(1),WI(1), ∂WI(1),WII(1) in first and W(2),WI(2),WII(2)

in second order.

All difficulties are reduced to book-keeping of diagrams, which could be handled by

a numerical program code. This allows for a microscopic description of more com-

plex mesoscopic systems with many internal degrees of freedom (electronic structure,

coupling to fermionic or bosonic degrees of freedom, etc.).

First order calculations, using the theory presented above, have been performed for a

single level system [6] but also more complex systems [7, 8] up to structures approaching

a description of molecules [12, 13]. The inclusion of bosonic degrees of freedom has

been considered in [7, 8]. In second order we have studied the Coulomb-blockade

regime and spin-dependent transport for arbitrary bias [9, 10, 11].

We close this section with some comments on the theory we developed here:

1) The derivatives ∂W and ∂WI are associated with non-Markovian behavior of the

system, and are not present in Refs. [26, 27] and [6] which describe “orthodox theory”

(first order perturbation theory). However they become important for second- and

higher-order corrections. (For a discussion of non-Markovian effects see also Ref. [134].)

In Ref. [105, 104] co-tunneling shot noise was discussed in the Coulomb-blockade regime

by making use of a S-matrix expansion. In these works terms related to the non-

Markovian corrections have been neglected. This can be done only if first order con-

tributions are suppressed sufficiently strong compared to second order terms. This

becomes transparent in our expression for the noise, where the corresponding term can

be written as 2eI(eT∂WIpst). Counting the powers in Γ we see that the second order

contributions to the noise contains the current I to first order. The first order current,

however, is exponentially small in the Coulomb blockade region. We may understand

the situation as follows: sequential tunneling events are rare since thermal excitations

of the excited states are exponentially suppressed. A long time will pass between two

such events and the system thus is most likely to recover the ground state in between

(by co-tunneling processes). Therefore, the system loses its memory between sequen-

tial tunneling events deep in the Coulomb blockade region. This will not be the case

anymore, if we are closer to the onset of sequential tunneling. Therefore, neglecting

the memory effects is a reasonable approximation only deep in the Coulomb blockade

regime, far away from the sequential tunneling threshold.

2) Higher derivatives than the first derivative will not appear for the shot noise even

for higher-order corrections (k > 2). We will discuss this in more detail in section 3.7,

where further extensions of our theory to describe higher correlators, as is the objective

of full counting statistics (FCS), are discussed.

3) Since Eqs. 3.26, 3.32, 3.44 and 3.48 are valid for arbitrary order perturbation theory
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in Γ, we have derived a theory here, which could in principle describe Kondo physics

as well, when considering a corresponding choice of diagrams (as was done in [132],

within a resonant tunneling approximation). The main problem to be solved, is the

appropriate calculation of diagrams containing two current vertices WII , which are the

most difficult to relate to the ’pure’ transition rates W. However, we have to realize

that our main assumption was the factorization of the density matrix into parts of the

reservoirs and the island. This, in principle, restricts us to a perturbative approach,

which can be expanded to infinite order. The description of the Kondo problem may

be possible due to an approximative mapping to capture the relevant physics.

4) Another assumption is the restriction to consider the diagonal elements of the density

matrix only. Coherence effects therefore are not taken fully into account. However,

we show in chapter 3.8 that the structure of the noise formulas we derived here will

remain unchanged, and only the objects pst and P have to be calculated differently.

5) The description of finite frequency shot noise poses no problem within our theory

as well. In chapter 3.6 we show the relation of our zero frequency theory we developed

here to a theory accounting for finite frequencies.

6) An alternative description of the shot noise in terms of non-equilibrium Green func-

tions, as has been developed for the current, poses a stronger problem, since two-particle

Green functions are encountered now. When an exact treatment of interaction effects

is desired, as we did in our approach, a reduction to a single particle picture or appli-

cation of Wick’s theorem is not allowed. This is reflected in the objects, we encounter

within our theory of shot noise. The rates WI in the current are easily related to

the rates W, since due to the sum rule the only truly relevant position of the current

vertex is the rightmost in the diagrammatic representation. A relation between the

Green functions and irreducible blocks W is found almost trivially [132]. In contrast,

the rates WII or ∂W, ∂WI are not linked in an obvious way to the blocks W, and

hence the Green functions. This is a problem especially for WII .
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3.6 Finite frequency shot noise

In this section we show that a description of finite frequency noise is straightforward

in our diagrammatic approach. We begin again with its definition

S =

∞
∫

−∞

dt
[

〈Î(t)Î(0) + Î(0)Î(t)〉 − 2〈Î〉2
]

eiωt. (3.60)

The last term can be expressed in terms of the Dirac-Delta-function, since δ(ω) =
∫∞

−∞
dteiωt vanishes for finite frequencies. Therefore, at finite frequencies we do not

have to subtract the 〈Î〉2 part, which in the zero frequency limit led to a divergence.

Also the noise part with the propagator between two irreducible blocks does not diverge,

as we will see next. In analogy to all other calculations in the last section we can write

down the symmetrized noise as

S(ω) =
e2

2~
eT
[

WII(ω) + WI
<(ω)Π(ω)WI

>(ω)
]

pst + (ω → −ω). (3.61)

The frequency dependent propagator takes finite values as long as ω 6= 0 and reads

Π(ω) = [iω1− W(ω)]−1 . (3.62)

In the zero frequency limit the divergence was due to the zero eigenvalue of the matrix

W(ω = 0). We find that again all quantities are expressed in terms of irreducible

blocks W,WI and WII . Although Eqs. 3.61 and 3.62 are more compact in appearance

we want to explain why this does not mean that the noise is easier to calculate at

finite frequencies. In contrary, we encounter more complicated objects here, since in

addition to the blocks as introduced in the last section we now have to account for

an external frequency line running through the diagrams. This is illustrated for the

WII

I I
ω

Figure 3.14: An example for the frequency dependent diagrams WII(ω), where an

external line, connecting the two current vertices runs through the whole, or parts

of the diagram.

diagrams including two current vertices in Fig. 3.14 and 3.15. Since the external

vertices may sit on arbitrary positions between the internal vertices, the frequency line

connecting the current vertices can cover the whole, or only parts of a diagram. In
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section 3.3 we discussed a special symmetry of diagrams, when changing the direction

of all lines and reflecting them on a horizontal cut. This mirror rule allowed for a

compactification of diagrams, which led to W + W∗ = 2ReW (in Ref. [132] this

was Σ + (−Σ∗) = 2ImΣ). This rule cannot be applied anymore, since the external

frequency line is fixed in direction. The blocks W cannot be written as real objects

anymore, which makes their evaluation considerably harder, and additionally enhances

the number of diagrams drastically. Diagrammatically, the frequency line with index

ω is accounted for by adding its energy ~ω appropriately to the energies of internal

lines, which keeps the rules from appendix A unchanged. We only have to sum over

a larger number of diagrams later on. For the second contribution of Eq. 3.61 we find

W<
I W>

I

II
ω

Π

Figure 3.15: An example for the second frequency dependent term in Eq. 3.61.

The current vertex in a block WI
<(ω) is connected to another in block WI

>(ω).

diagrams WI
<(ω),WI

>(ω), which have open frequency lines to the right or left side,

with a propagator, expressible in terms of diagrams W(ω), with a line crossing the

whole block. This visualizes that for lines covering parts of WI
<(ω),WI

>(ω) on both

sides current events at different times are connected, making Fig. 3.15 ’irreducible’ in

a sense. [Note that there are also combinations where a current vertex sits on the

edge, where the propagator begins]. Diagrams of the kind as shown above will provide

contributions which we attributed to memory effects in the last section. Indeed, when

calculating the first order contribution to the noise we find that contributions resulting

from structures like Fig. 3.15 also provide a second order contribution. A well defined

perturbation expansion in the coupling strength to the reservoirs only (in principle one

could think to consider a combination of Γ and ω) is therefore not possible, and one

has to select different order terms ’by hand’.

In the following, we want to show, that our zero frequency noise formula is exactly

recovered, when taking the limit ω → 0 of Eq. 3.61. This will show that the frequency

dependent noise, as applied to lowest order calculations for example in Refs. [135,

136], can describe higher order contributions correctly as well and thus accounts for

the non-Markovian memory effects. We could take this limit in the present energy

representation, by performing a spectral eigenvalue decomposition of the propagator.

In analogy to our zero frequency calculations in the last section however, we formally

rewrite Eq. 3.61 in time space in terms of frequency dependent objects and include
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the contribution again, which we neglected due to the Delta function. We recover an

object

P(ω, t′′′) = lim
t0→−∞

t′′′
∫

t0

dt′′
1

~
e−iω(t′′′−t′′) [Π(t′′′, t′′) −Π(t′′′, t0)] (3.63)

which gives P(ω, 0) = P(ω) when shifting the time t′′′ to zero. Doing an analoguous

calculations to before, we find that by splitting the exponential in the definition Eq. 3.60

as eiωt = e−iω(0−t′′′)e−iω(t′′′−t′′)e−iω(t′′−t) allows us to attach the frequency ω directly to

the objects appearing in the noise expression. We end up with a corresponding noise

formula to Eq. 3.61

S+(ω) =
e2

2~
eT

[

WII(ω) + WI
<(ω)P(ω)WI

>(ω) +
(

WI
<(ω) −WI

) pst ⊗ eT

iω~
WI

>(ω)

]

pst,

(3.64)

with one block being independent of frequency. Note that a difference of two irreducible

blocks appears which is due to integrations over two different times, connected with a

frequency. The full noise reads

S(ω) = S+(ω) + S−(ω), (3.65)

where S−(ω) = S+(−ω). The equation which determines the object P(ω) is found as

usual from the Dyson equation. Together with P(ω) = Π(ω) + i
ω
pst ⊗ eT this leads to

[W(ω)− iω1]P(ω) =
[

pst ⊗ eT − 1
]

− 1

iω
W(ω)pst ⊗ eT . (3.66)

The Eqs. 3.64, 3.65 and 3.66 are equivalent to Eqs. 3.61 and 3.62. If one wants to

expand these equations in perturbation theory, it is significant that a fixed order of the

right hand side of Eq. 3.66 requires terms of different orders for P(ω) on the left side,

since W(ω) starts with first order in Γ and iω1 is independent of Γ (zeroth order).

When taking the limit ω → 0 we have to make use of l’Hospitals rule and find derivatives

with respect to the frequency, which is equivalent to our former definition of ∂W as

(∂W(ω)/∂ω) |ω=0+ = i (∂W(z)/∂z) |z=0+ = ∂W. The rates as defined above reduce to

W,WI,WII in the zero frequency limit. In this limit we recover our zero frequency

noise formula Eq. 3.44 and the determination equation (Eq. 3.47).

The equivalence of the zero and finite frequency noise formulas in the limit ω → 0

shows that both account for non-Markovian memory effects relevant for higher order

contributions in the coupling strength. It is straightforward to perform calculations

of finite frequency shot noise within our diagrammatic technique, however the zero

frequency formula (although more lengthy in appearance) allows a much easier calcu-

lation of the irreducible self energy diagrams, since symmetries reduce the number of

needed diagrams. In chapter 4 we only consider the zero frequency noise, as motivated

in chapter 2.2 (white noise behavior up to high frequencies).
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3.7 Higher correlators

In the last years the idea of Full Counting Statistics (FCS) for electron transport has

attracted much interest. This theory counts the probability of N electrons having

passed a mesoscopic system during a time t and was introduced from [137, 138, 139]

and further extended and studied from [140, 141, 142, 143, 144, 145, 146, 134]. The

full information about all transport properties of a given system is contained in the

probability distribution P (N, t), which is related to the cumulant generating function

(CGF)

S(λ) = −ln

[

∞
∑

N=−∞

eiNλP (N, t)

]

(3.67)

depending on a so called counting field λ. The quantum mechanical form of this

function is found to be

e−S(λ) = 〈Te−i λ

2e

R t0
0 dtÎ(t)T̃ e−i λ

2e

R t0
0 dtÎ(t)〉. (3.68)

with T and T̃ being the time and anti-time ordering operators. When expanding

Eq. 3.68 it becomes clear, that higher order current correlators (Î(t) being the current

operator) are encountered. Therefore another quantity has been defined, which is the

n-th cumulant, related to the n-th derivative of the CGF

Cn = −(−i)n ∂n

∂λn
S(λ)|λ=0. (3.69)

The charm of FCS lies in the fact that higher correlator can be determined immediately

after the calculation of only one functional. It is then straightforward to relate the first

cumulant to the current expectation value C1 = − t0
e
I and the second one to the shot

noise C2 = t0
2e2S, where t0 denotes the initial time (which we shift to minus infinity).

[I and S are are the expectation values as defined in chapters 3.4 and 3.5. Note

that n integrals are present in the n-th cumulant, which can always be reduced to

n − 1 integrals, since only the relative times between current measures are physically

relevant.]

The limited literature on FCS deals mostly with a description of the weak coupling

regime (first order in Γ). Very recently, a theory taking into account higher order

contributions while describing two-particle interaction effects exactly has been derived

[134] within FCS. In Ref. [134] it is shown that non-Markovian memory effects appear

in the shot noise beginning at second order perturbation theory in Γ. This is in agree-

ment with our theory of shot noise, as discussed in chapter 3.5. All results derived

in Ref. [134] are reproduced within our theory. The memory effects show up in terms

containing a derivative of irreducible self energy blocks with respect to a convergence

factor. Ref. [134] shows that the highest derivative in the n-th cumulant is given by
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[min(k, n) − 1] where k is the order of the perturbation expansion. Since n = 1 for

the current and n = 2 for the shot noise, we find that only a single derivative be-

ginning in second order contributions to the noise will appear, whereas in the current

non-Markovian effects do not play a role at all.

All this can be understood from the perspective of our diagrammatic technique as well.

Since for higher correlators (n−1) external integrals have to be done they will produce

terms of the kind t(n−1)W(0, t) by rearranging objects in terms of P. The maximal

derivative we have to expect will therefore be of the order (n − 1), present in objects

∂n−1W. We find that the n-th current correlator is composed of products of up to the n-

th correlator with up to the (n−1)-th derivative. Since each correlator starts with first

order in Γ, we find that for a given order in perturbation theory k at most the (k− 1)-

th derivative will appear. The prediction from Ref. [134] is therefore in agreement

with our expectations for arbitrary current-correlators. As an example consider the

third correlator, described by objects of the kind WIII, WIIΠWI , WIΠWII and

WIΠWIΠWI . Together with contributions of the current I and the shot noise S the

propagators Π can be expressed in terms of objects P again. The object WIΠWIΠWI

has to be combined with current terms of the form I3. This is the place where second

derivatives will appear, since the two external integrals are taken over constant objects

in time, leading to expressions of the kind ~
∫ 0

−∞
t2eztW(0, t).

Our theory can thus be generalized to describe higher current correlators as well. The

tedious work of calculating a general expression needs to be done first. After this is

done, arbitrary correlators could be computed immediately, since the rules of how to

expand diagrams containing an arbitrary number of current vertices remain unchanged.

On the other hand we should ask, why higher cumulants or correlators are interesting

to study, besides the technical achievement of providing a ’compact’ theory. Low

frequency current fluctuations give rise to a large number of irreducible correlation

functions. The current-current correlation function (shot noise) still provides only

partial information about the current fluctuations. For a complete picture additionally

higher correlators should have to be considered. The current tells about the mean

electronic transport, the shot noise tells about its fluctuations. The third correlator

(skewness) tells us about asymmetry in the distribution function. It can be shown that

odd correlators (current, skewness, etc.) vanish at equilibrium and are not masked

by thermal fluctuations. Therefore, they can be used for probing non-equilibrium

properties at relatively high temperatures. Furthermore, they depend on the direction

the current is flowing (not only its absolute value), in contrast to even correlators, which

in turn also capture the physics of thermal fluctuations and random transmissions of

particles.

Up to date only a single measurement of a higher moment than the shot noise has

been published, namely an experiment on the skewness, in Ref. [147]. However it still
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is not clear, what quantity is measured indeed in experiment, the third cumulant (as

derived from Eq. 3.68), the third correlator (as we would describe within our theory)

or a combination of first, second and third cumulants or correlators. A discussion of

different regimes (if the decay time t0 is large or small compared to the electrons flight

time between detector and scatterer) using different generating functions CGF (one

is Eq. 3.68, another related to our approach) has been published in Ref. [148]. The

problem may become more transparent by explicitly writing down the third cumulant as

defined above. We find i∂
3Z(λ)
∂λ3 |λ=0 = C1+3C1C2+C3 with the definition Z(λ) = e−S(λ).

The problem we are confronted with is the fact, that there is no trivial relation to the

third correlator,

∼
t0
∫

0

dt3

t0
∫

0

dt2

t0
∫

0

dt1

〈

∑

Perm.

[Î(t3)Î(t2)Î(t1)]

〉

, (3.70)

including all permutations of times. Our diagrammatic approach would straight for-

wardly provide expressions related to this correlator. However, from Eq. 3.68 we find

∂3Z(λ)

∂λ3
|λ=0 =

i

8e3

t0
∫

0

dt3

t0
∫

0

dt2

t0
∫

0

dt1 (3.71)

〈

T [Î(t3)Î(t2)Î(t1)] + T̃ [Î(t3)Î(t2)Î(t1)]

+T [Î(t3)Î(t2)]Î(t1) + Î(t1)T̃ [Î(t2)Î(t3)]

+T [Î(t2)Î(t1)]Î(t3) + Î(t3)T̃ [Î(t1)Î(t2)]

+T [Î(t1)Î(t3)]Î(t2) + Î(t2)T̃ [Î(t1)Î(t3)]
〉

which is different to the third correlator. The third cumulant C3 is therefore non-

trivially related to the third correlator. Technically, it could be interesting to relate

the two approaches to each other. However, for the experimental comparison it is

more relevant to clarify first what quantity is measured in reality and what would be

a natural definition for this quantity.
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3.8 Off-diagonal elements and coherent processes

For the derivation of the current and shot noise we assumed the density matrix to be

diagonal, which, strictly speaking, restricts us to consider localized level structures.

This assumption was made only for the objects pst and P where the Dyson equation

enters. If we want to include the off-diagonal elements also, we have to derive new

equations to determine these (off-diagonal) objects. However, the general form of the

current and noise formula remain unchanged. The only difference is that transition

rates may also begin and end in mixed states, leading to rates depending on all four

(instead of two) state labels on the Keldysh contour. This increases the complexity of

calculations significantly, but it is not a fundamental technical problem. In order to

account for off-diagonal elements of the density matrix as well, we rewrite the Dyson

equation in its most general form

Π
χ′

1χ1

χ′
2χ2

(t, t0) = Π(0)χ
′
1

χ′
2
(t, t0)δχ1,χ′

1
δχ2,χ′

2
(3.72)

+
∑

χ′′
1 ,χ′′

2

t′
∫

t

dt2

t2
∫

t

dt1 Π(0)χ
′
1

χ′
2
(t, t2)W

χ′
1χ′′

1

χ′
2χ′′

2
(t2, t1)Π

χ′′
1χ1

χ′′
2χ2

(t1, t0),

where Π(0)χ
′
1

χ′
2
(t, t0) = exp[−i(εχ′

1
− εχ′

2
)(t − t0)] is the propagator of the isolated dot.

Furthermore the density matrix of the dot at time t′ reads

p
χ′

1

χ′
2
(t) = 〈|χ′

2〉〈χ′
1|(t)〉 (3.73)

which is related to the Dyson equation by

p
χ′

1

χ′
2
(t) =

∑

χ1,χ2

Π
χ′

1χ1

χ′
2χ2

(t, t0)p
χ1

χ2
(t0). (3.74)

Now we insert Eq. 3.73 into Eq. 3.74, sum over χ1, χ2 and differentiate with respect to

t. This yields

d

dt′
p

χ′
1

χ′
2
(t) + i(εχ′

1−χ′
2
)p

χ′
1

χ′
2
(t) =

∑

χ′′
1 ,χ′′

2

t
∫

t0

dt1W
χ′

1χ′′
1

χ′
2χ′′

2
(t, t1)p

χ′′
1

χ′′
2
(t1), (3.75)

This is the most general kinetic equation for the reduced density matrix. We want to

consider the stationary limit again and choose t = 0 and the limit t0 → −∞, where we

can take out the Laplace transformation of the irreducible blocks.
∑

χ′′
1 ,χ′′

2

[W
χ′

1χ′′
1

χ′
2χ′′

2
− i(εχ′

1−χ′
2
)δχ′

1,χ′′
1
δχ′

2,χ′′
2
]pstχ

′′
1

χ′′
2

= 0 (3.76)

Eq. 3.76 reflects a quantum rate equation, since an interpretation of the off-diagonal

elements as classical probabilities is not possible. The sum over the diagonal elements
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of pstχ
′′
1

χ′′
2

has to be conserved and equals unity. Note that Eq. 3.76 simplifies to the

master equation for diagonal matrix elements if χ′
1 = χ′

2 = χ′ and χ′′
1 = χ′′

2 = χ′′. The

off-diagonal elements can be understood as possible realizations of linear combinations

of quantum states. This is typical for delocalized systems (e.g. a number of coupled

quantum dots), where electrons entering the system from a reservoir can not remain

localized on a certain dot if participating in transport. Quantum rate equations describ-

ing coherence effects in mesoscopic systems have been derived by Gurvitz [106, 107].

Restrictions to a fixed bias regime (far away from resonances) and vanishing tempera-

tures however limit this approach. Theories attempting to extend the Gurvitz approach

to finite temperatures and bias voltages have been proposed in [110, 111] in a lowest

order perturbation approach in the coupling Γ.

After solving Eq. 3.76 the current as introduced in chapter 3.4 can be computed, with

objects WI depending now on four dot states labels. However, it is clear that at a

fixed time only mixed states within the same charge sector can be realized, which will

limit the additional number of diagrams.

Transmission amplitudes connecting different times may have different quantum num-

bers (since the electrons can not be located in certain dot levels). The operator alge-

bra generalizes from expressions like |tq〈χ′|cp|χ〉|2 to tqtq′〈χ2|cp′|χ′
2〉〈χ′

1|cp|χ1〉 (q, q′, p, p′

define quantum numbers again). A diagrammatic description of non-diagonal rates is

therefore not a technical problem, but simply a book keeping one.

However we want to emphasize here, that one has to be careful with use of the terms

like coherence and delocalization. It is clear that our description based on a diagonal

density matrix cannot describe coherence effects in the sense as discussed in this section.

However co-tunneling processes in situations of intermediate coupling approach a limit,

where the quantum mechanical coherence time is longer than the time in which energy

relaxation can take place in the scattering region or the dot system. This also implies

coherence in a quantum sense. Thus, the word ’coherence’ is connected with two

different quantum effects. On the other hand, it is possible to describe delocalized

systems (e.g. as relevant to describe coupled quantum dots or molecules) even while

neglecting the off-diagonal elements. When diagonalizing the system Hamiltonian,

we can change to a new basis, allowing to account for inter-dot couplings via the

exact many body wavefunctions, whereas the coupling between electrodes and the dot

system is still treated perturbatively. Transport through delocalized system is described

correctly in that way, as long as the reservoir-dot coupling is small compared to the

’internal’ coupling energies (coupled quantum dots are treated in this way in chapter

4.4). This restriction is lifted, if ’coherence’ effects via off-diagonal elements of the

density matrix are taken into account.
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4 Results

In the following we want to review the main physical insights we can get about trans-

port through systems like molecules or quantum dots in the sequential and co-tunneling

regime. In chapters 3.4 and 3.5 we presented the first and second order formulas for

current and shot noise (I(1), I(2), S(1), S(2)). All quantities have been expressed in terms

of transition rates, which are explained in more detail in the appendices B and C. In

case of first order rates, we can write down explicitly analytical expressions, allowing

therefore to compute straightforwardly systems of arbitrary complexity, including many

electronic levels, interaction effects and even a coupling to bosonic degrees of freedom.

For the second order rates we give the ingredients for a calculation and discuss the

mathematical structure of the contributions. The diagrammatic rules can be formu-

lated such that a straightforward numerical computation involving an operator-algebra

becomes possible as well.

We will first specify three different model Hamiltonians which present special cases of

the general Hamiltonian as introduced in chapter 3.2. After that, we discuss results

for the current and shot noise for these models. In the present chapter we will thus

study sequential and co-tunneling current and shot noise in systems like molecules or

quantum dots in the Coulomb blockade, the finite transport regime and the crossover

regime. We consider single and multi-level structures as well as photon relaxation

effects. For spin-dependent coupling we can study the physics of spintronic devices. A

brief outlook to more complex systems like several coupled quantum dots (’artificial

molecules’) will be given at the end. Most of the results presented in this chapter are

taken from our former publications [6, 7, 8, 9, 10, 11, 12, 13]. We want to introduce

the following conventions, to keep our language as clear as possible:

1) For the discussion of first order quantities we use p
(0)
χ if discussing probabilities,

I(1), S(1) for current and noise and F (1) = S(1)/2eI(1) for the Fano factor.

2) For the discussion of second order quantities we use pχ = p
(0)
χ + p

(1)
χ for the proba-

bilities, I = I(1) + I(2) and S = S(1) +S(2) for current and noise and F = S/2eI for the

Fano factor (all objects including the second order corrections).

3) All energy parameters (e.g. level energies, interactions, temperature, etc.) are

expressed in terms of the total linewidth Γ. The bias voltage Vb we give in terms of

2Γ/e. Since a finite bias situation is described by different chemical potentials which

we choose symmetrically µL = eVb/2 and µR = −eVb/2, resonance energies, leading to

step structures in the transport curves, can be compared directly to the bias voltage.

4) In order to apply the results to quantum dots or molecules, the coupling strength

should be chosen to Γ ∼ 10 µeV in the first case and Γ ∼ 10 meV in the latter case.
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4.1 Model Systems

In chapter 3.2 we introduced a general Hamiltonian (H = HL + HR + HD + HB +

HT,L + HT,R + HB−D) we can account for within our theory. Here we consider three

specifications of this Hamiltonian, to model electron transport through a system with

N levels. In this chapter we present results, based on calculations for these models. It

is therefore possible to skip this section at the moment and come back to consider the

corresponding models, when discussed in the text.

The electronic reservoirs with r = L,R are described by

Hr =
∑

kσ

εkσra
†
kσrakσr, (4.1)

and tunneling to the i = 1, .., N levels is given by

HT,r =
∑

ikσ

(

triσa
†
kσrciσ + h.c.

)

. (4.2)

These parts of the general Hamiltonian will be the same for all our models. The main

difference of our following models will therefore consist in the electronic structure of

the island and a possible inclusion of bosonic degrees of freedom.

A) Our first model to be considered is a single-level Anderson impurity model (with

N = 1, c1σ = cσ, t
r
1σ = trσ) with the Hamiltonian

HD =
∑

σ

εσc
†
σcσ + Un↑n↓ (4.3)

describing a single spin-dependent energy level including the Zeeman energy ∆ due

to an external magnetic field, when using the definition ε↓ = ε − ∆
2

and ε↑ = ε + ∆
2
.

Additionally we account for interaction effects via the Coulomb interaction U on the

island (n↑, n↓ being the number operator for electrons with corresponding spin). We

neglect bosonic degrees of freedom and set HB = HB−D = 0. Model A therefore

describes the simplest model including interaction effects or a magnetic spin splitting

and can be used in particular to study quantum dot structures or, as often denoted,

’artificial atoms’. This simple model-system was sufficient to describe the experimental

features as discussed in chapter 2.

For the coupling parameters Γ1σ
r = Γσ

r we define Γr = (Γ↓
r + Γ↑

r)/2, Γσ = Γσ
L + Γσ

R, and

Γ = ΓL + ΓR. A possible choice of spin-dependent couplings thus allows for a study

of spin-dependent transport which is the subject of the field of spintronics. We may

characterize a spin polarization of the magnetically polarized leads via a factor

pr = (Γ↑
r − Γ↓

r )/(Γ
↑
r + Γ↓

r ). (4.4)

This makes a further specification possible:
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A1) By choosing p = ±pL = ±pR the parallel P± configurations are realized (which lead

due to their special left-right-symmetry to symmetric curves with respect to a finite

bias voltage) and with p = pL = −pR the antiparallel AP configuration is realized (a

choice p = −pL = pR is equivalent to considering the reversed bias region Vb → −Vb).

We furthermore assume ΓL = ΓR = Γ/2 here. This describes a ferromagnet-dot-

ferromagnet (F-D-F) system.

A2) When choosing p = ±pL and pR = 0 or p = ±pR and pL = 0 (and ΓL = ΓR =

Γ/2), a ferromagnet-dot-normal leads (F-D-N) and a normal-dot-ferromagnet (N-D-F)

system are described.

A3) In the absence of spin-polarization, when p = pL = pR = 0 we can study a quantum

dot coupled to normal leads (N-D-N), where an asymmetric situation with ΓL 6= ΓR

may be realized (for example we can choose ΓL = aΓ and ΓR = (1 − a)Γ).

Depending on the choice of configuration, two parameters remain to be fixed in model

A: the total coupling Γ and an asymmetry factor a or polarization factor p with values

between 0 and 1.
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Figure 4.1: Sketch of the excitation energies of the single level model (e.g. a

single quantum dot), defined by an energy ε, a spin splitting ∆ and the Coulomb

interaction U . Here, a small bias situation is shown as an example, where co-

tunneling processes (an inelastic one is indicated) provide the main contribution

to transport.

The model contains the following energy parameters: temperature kBT , level energy

ε, spin-splitting ∆ and Coulomb-interaction U , which are expressed in terms of Γ.

Without loss of generality we can restrict ourselves to U ≥ 0 and ∆ ≥ 0. The energy ε

can be chosen to be negative or positive. In Fig. 4.1 we sketch the excitation spectrum
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of the single level model consisting of four excitation energies (not to be confused with

a four level model), which is helpful to understand the relevant physical processes in

different orders (of the coupling strength) for different choices of energy parameters.

The single-level Anderson impurity model contains four (4N with (N = 1)) many-body

dot states. Either an empty |0〉 state, an occupied state | ↓〉 , | ↑〉 due to the spins or

a doubly occupied state |d〉 can be realized on the dot.

B) A more generalized Anderson impurity model coupled to a bosonic bath is described

by our second model with the Hamiltonian

HD =
∑

iσ

εiσc
†
iσciσ + U

∑

i

ni↑ni↓ + EC

(

∑

iσ

niσ

)2

(4.5)

where we consider N = 2 levels (i = 1, 2). We include a charging energy EC which

accounts for the classical energy cost to add a charge on a confined system with many

electrons. We study photon relaxation effects by allowing processes where electrons

on the dot can change the level by emitting or absorbing a photon by i 6= j with the

Hamiltonian

Hph = HB +HB−D =
∑

q

ωqd
†
qdq +

∑

qσij

gph(d
†
q + dq)c

†
iσcjσ, (4.6)

where we consider the constants gij
q = (1 − δij)gph to be independent of i, j and q.

This leads to a bosonic coupling constant αph(ω) = 2πg2
phρb(ω). For the relaxation
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Figure 4.2: Sketch of the two energy levels for model B. [Here no excitation spec-

trum is depicted, since there would be 16 excitation energies. The relevant exci-

tation energies considered for this model are explained in the text.] The coupling

parameters and an example for a relaxation process are indicated for a finite bias

situation.

due to photons we choose a power law behavior ρb(ω) ∝ ω3, corresponding to photons

with 3 spatial degrees of freedom. [Note that a diagonal coupling, i = j, would not be

associated with relaxation but would give rise to ‘boson-assisted tunneling’, leading to

additional steps in the I-V when the boson bath has a discrete spectrum [127, 128, 129].]
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We take the coupling strength Γiσ
r to be independent of the spin and write Γr

i (in order

to distinguish from quadratic terms, which could appear for i = 2). Furthermore for

equal tunneling couplings we choose ΓL
1 = ΓR

1 = ΓL
2 = ΓR

2 = Γ.

Model B therefore contains five different coupling parameters (Γr
i and αph). This is

illustrated in Fig. 4.2, where the couplings to the two levels with energies ε1, ε2 and

an example for a relaxation process with strength αph are indicated for a finite bias

situation.

Concerning the energy parameters we limit ourselves to a vanishing Zeeman splitting

(∆ = 0) and therefore we find kBT, ε1, ε2, U and EC as parameters which we express

in terms of Γ. We also choose the temperature of the photonic bath to be the same as

the one of the electronic reservoirs (Tb = T ).

In the case of the two level model we find 16 (4N with (N = 2)) different many-body

dot states. Model B is discussed in chapter 4.2.2.

C) The third model we want to consider describes a series of coupled quantum dots

(’artificial molecule’) and can be understood as a more realistic approximation to a

molecular system with delocalized orbitals (levels). Results for this model are presented

in chapter 4.4. In order to focus on the nature of the delocalized system we neglect

again a coupling to a bosonic bath and choose HB = HB−D = 0. The dot Hamiltonian

reads

HD = ε
∑

iσ

c†iσciσ − t
∑

(i6=j)σ

c†iσcjσ + U
∑

i

ni↑ni↓ + Unn

∑

(i6=j)σσ′

niσnjσ′ , (4.7)

with i, j = 1...N . We take N = 3, leading to 64 many-body states of the dot system.
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Figure 4.3: Sketch of model C describing three coupled quantum dots (delocalized

levels) with energy ε. Nearest neighbor hopping t and the two coupling parameters

are indicated as well.

We define the following energy parameters besides a temperature kBT : an on-site

energy ε of the three dots, a nearest neighbor hopping t, an intra-dot U and a nearest

neighbor inter-dot Coulomb repulsion Unn. As the only non-vanishing dot-electrode

coupling constants we choose ΓL
1 = ΓR

3 = Γ/2, meaning that the electrodes only couple

to the adjacent dots.
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4.2 Sequential tunneling

Current and shot noise within the sequential tunneling picture have been studied in a

variety of systems (for example in Refs. [6, 7, 63, 64, 149, 150, 151]). Here we want

to provide an overview over the main features to be expected when a weak coupling

situation (first order Γ) determines the transport in mesoscopic systems. Possible

candidates have been discussed in chapter 2 with the semiconductor quantum dots and

the theoretical approach has been introduced in chapter 3 together with a discussion of

the range of validity of this theory. However, we remind once again of the applicability

of the following results to molecules as well, although we mostly use the technical

language for descriptions of quantum dot structures. The expression of all parameters

in terms of Γ allows for an appropriate choice of scales for quantum dots or molecules.

Since the coupling parameter Γ in ’orthodox theory’ has to be small compared to all

energy parameters including the temperature, we choose kBT = 10Γ in this section.

We begin with the discussion of the Anderson impurity model (A) as introduced before

and consider an extension to a multi-level system (B) after that.

4.2.1 Single-level systems

Normal leads

We choose a set of energy parameters: ε = 150Γ, ∆ = 100Γ (or equivalently ε↓ =

100Γ, ε↑ = 200Γ) and U = 400Γ for a single level quantum dot coupled to normal

leads (model A3). Current I(1) and shot noise S(1) are plotted vs. the bias voltage

Vb in Fig. 4.4. Electron transport becomes possible when charge excitations on the

dot become energetically allowed. Generally, at low bias, transport is exponentially

suppressed, unless a degeneracy of states with different net charge is present (this

could be tailored by the application of a gate voltage, which we do not consider here).

Each time when one of the four excitation energies ε↓ = (ε − ∆/2), ε↑ = (ε + ∆/2),

ε↓ +U = (ε−∆/2 + U), or ε↑ + U = (ε+ ∆/2 +U) enters the energy window defined

by the electrochemical potentials of the electrodes, a transport channel opens. This

gives rise to plateaus, separated by thermally broadened steps. Due to the symmetric

application of the bias, and the special scaling of the bias voltage as eVb/2Γ, the steps

occur at voltages of the corresponding excitation energy. The plateau heights depend

on the coupling parameters ΓL and ΓR only, i.e. they are independent of U and T . This

is the case since the excitation energies are large compared to the temperature and thus

the region of broadening. This allows to extract analytic expressions for current, noise,

and Fano factor (given in Tab. 4.1) of the different plateaus (labeled by i = 0, ..., 4).

The curves in Fig. 4.4 are normalized to Inorm = (e/~)Γ/2 and Snorm = (e2/~)Γ/2,

respectively. These values are reached in the large bias regime for symmetric couplings
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Figure 4.4: Current I(1) and shot noise S(1) vs. bias voltage for energy parameters

ε↓ = 100Γ, ε↑ = 200Γ and U = 400Γ. The temperature is chosen to be kBT = 10Γ

here and for the whole section 4.2. We find current and shot noise to be suppressed

for asymmetric coupling compared to the symmetric one: ΓL/ΓR = 1/1 (solid line),

1/3 (dashed line) and 3/1 (dotted line). The height of the plateaus labeled by

i = 0, .., 4 are given in Tab. 4.1. The curves are normalized to Inorm = (e/~)Γ/2

and Snorm = (e2/~)Γ/2, respectively.

ΓL = ΓR. For asymmetric coupling, the plateaus are reduced in height. In Fig. 4.4,

we show the results for 3ΓL = ΓR (dashed lines) and ΓL = 3ΓR (dotted lines) together

with the case of symmetric coupling (equivalent to choices a = 0.25 and a = 0.75 in

model A3). The symmetry of our setup implies that all plateau heights are invariant

under simultaneous exchange of ΓL with ΓR and µL with µR. However, the plateau

height can change if only ΓL and ΓR are exchanged, or if only the bias voltage is

reversed, as shown in our example for the two plateaus labeled by 2 and 3. This opens

the possibility to access the asymmetry ΓL/ΓR experimentally by reversing the bias

voltage and comparing the plateau heights. The fact that the plateau heights are not

symmetric under exchange of ΓL ↔ ΓR is an immediate consequence of the interaction

U . For non-interacting systems, the plateau values would be symmetric.

Fig. 4.4 shows the result for one special choice of energy parameters and corresponding

excitation energies. Nevertheless, Tab. 4.1 is complete in the sense that it contains all

possible plateau values for any configuration of the excitation energies relative to the
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i 0 1 2 3 4

Ii [e/h̄] 0 ΓLΓR

ΓL+ΓR

2ΓLΓR

2ΓL+ΓR

ΓLΓR(ΓL+2ΓR)
(ΓL+ΓR)2

2ΓLΓR

ΓL+ΓR

Si [e2/h̄] 0
2ΓLΓR(Γ2

L
+Γ2

R
)

(ΓL+ΓR)3
4ΓLΓR(4Γ2

L
+Γ2

R
)

(2ΓL+ΓR)3
2ΓLΓR(2ΓR+ΓL)(Γ3

L
+Γ3

R
+3Γ2

L
ΓR)

(ΓL+ΓR)5
4ΓLΓR(Γ2

L
+Γ2

R
)

(ΓL+ΓR)3

Fi − Γ2
L
+Γ2

R

(ΓL+ΓR)2
4Γ2

L
+Γ2

R

(2ΓL+ΓR)2
Γ3

L
+Γ3

R
+3Γ2

L
ΓR

(ΓL+ΓR)3
Γ2

L
+Γ2

R

(ΓL+ΓR)2

Table 4.1: Current, shot noise and Fano factor for the different plateaus in the

current-voltage characteristic shown in Fig. 4.4. The plateau values depend only

on the coupling parameters ΓL,R.

electrochemical potentials of the electrodes. The classification of the configurations

and the algorithm to find the corresponding analytic expressions in Tab. 4.1 is given in

Tab. 4.2. Without loss of generality we restrict ourselves to U ≥ 0 and ε↑ ≥ ε↓ (which

is equivalent to ∆ ≥ 0). The different configurations are classified by specifying which

excitation energies lie within the energy window defined by the chemical potentials

µL, µR. We find 13 different possibilities, as listed in Tab. 4.2. For each case, the index

i indicates the column where the corresponding analytic expressions for current, noise

and Fano factor can be found in Tab. 4.1. The indices 2∗ and 3∗ refer to columns 2

and 3 but with ΓL and ΓR being exchanged.

ε + U

ε + U

ε

µ R= −eV/2

µL =  eV/2
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Figure 4.5: A sketch of the configuration 2a listed in Tab. 4.2. The excitation

energies ε↓ and ε↑ lie in the energy window defined by the electrochemical potentials

µL and µR, and the energies ε↓ + U and ε↑ + U lie outside.

In order to illustrate the use of the table we sketch the situation 2a in Fig. 4.5, realized



4.2. SEQUENTIAL TUNNELING 79Case �# �" �# + U �" + U i0 - - - - 01a x - - - 11b - x - - 01
 - - x - 01d - - - x 12a x x - - 22b x - x - 12
 - x x - 02d - x - x 12e - - x x 2�3a x x x - 33b - x x x 3�4 x x x x 4
Table 4.2: Classification of all possible configurations that are possible for U ≥ 0

and ε↑ ≥ ε↓ (∆ ≥ 0). A cross (x) or minus (−) indicates that the corresponding

excitation energy lies within or outside the energy window defined by the electro-

chemical potentials µL and µR, respectively. For each configuration, the analytic

expression for current, noise and Fano factor can be found in Tab. 4.1 in column

i. The indices 2∗ and 3∗ refer to column 2 and 3 with ΓL and ΓR being exchanged.

in Fig. 4.4 in the region between eVb/2Γ = 200 and 500. In this situation transport

through both spin states is present as the single level gets charged/uncharged in the

sequential tunneling events. Double occupancy is still out of reach, as the excitation

energies ε↓+U and ε↑+U are outside the energy window opened by the applied voltage.

[We use the notation of energies for the different spin states instead of the splitting ∆,

in order to easier identify the position of excitation energies. The notation in terms of

a spin-splitting ∆ will be more convenient for the discussion of second order transport.]

For an arbitrary choice of energy parameters and bias voltage we can therefore identify

one of the 13 cases as indicated in Tab. 4.2. The table then tells us, in which column

of Tab. 4.1 the expressions of current, noise and Fano factor can be found. We will

show in the following, that the same parameter extraction can be done in the case of
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Figure 4.6: Fano factor vs. bias voltage for for the same parameters as in Fig. 4.4

and ΓL/ΓR = 1/1 (solid line), 1/3 (dashed line) and 3/1 (dotted line). The labels

0, 1a, 2a, 3a, 4 refer to the cases listed in Tab. 4.2

spin-dependent transport for the different configurations as introduced with the models

A1 and A2.

We now turn to the discussion of the Fano factor F (1) = S(1)/2eI(1). In Fig. 4.6

we show the Fano factor as a function of bias voltage for the same parameters as in

Fig. 4.4. Again we show three curves with ΓL/ΓR = 1/1 (solid line), 1/3 (dashed

line) and 3/1 (dotted line). At small bias, eVb ≪ kBT , the noise is dominated by

thermal noise, described by the well-known hyperbolic cotangent behavior which leads

to a divergence of the Fano factor [5, 104], as we discussed in chapter 2 as well. The

plateau for bias voltages below eVb/2Γ = 100 corresponds to the Coulomb-blockade

regime, where transport is exponentially suppressed (case 0 in Tab. 4.2). In the region

between eVb/2Γ = 100 and 200 (case 1a) transport through only one spin state (↓) is

possible. The Fano factor F1 for this case has been derived earlier in Ref. [28]. For very

large bias (region F4), all states of the single level are involved in transport, and the

Fano factor F4 is again identical to the well-known [5] formula for transport through a

resonant level in the absence of Coulomb charging energy.

For the regions in between, corresponding to the cases 2a and 3a, the Fano factor is

different. The expression for F2 has been derived in Ref. [146], while F3, corresponding

to region 3a, has been presented in one of our former publications [6]. On similar

grounds than for the current and the noise, we find that the expressions for the Fano

factors F2 and F3 are not invariant under exchange of ΓL and ΓR alone, and also not

invariant under reverse of the bias voltage alone. This is clearly seen in Fig. 4.6 in

the very different plateau heights of the dotted and dashed curves, corresponding to
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exchange of ΓL and ΓR. Furthermore, we see that all plateau heights lie between 1/2

and 1, and that the Fano factor, in general, is a non-monotonic function of the bias

voltage. We find that F1 = F4 and F3 ≥ F2 always holds, whereas F1 ≥ F2 for

ΓL/ΓR ≤ 1/
√

2, and F1 ≥ F3 for ΓL/ΓR ≤ 1/2 only.

As a consequence, the pattern of the plateau sequence, in particular the relative height

of the plateaus F2 and F3 compared to F1 = F4 indicate not only the presence of an

interaction or charging energy, but also give over-complete information on the ratio

ΓL/ΓR of the coupling strengths. This could be used in experiments to determine these

parameters in a consistent way. In an experiment observing more than one plateau,

the over-completeness would give narrow constraints (due to experimental uncertainty)

on whether a single interacting level can explain the measured values. Of course, it is

always possible to fit n plateaus with n non-interacting levels and different couplings

per level, so an absolute decision on the presence of interactions is not possible without

the additional application of a gate voltage. However, if a fit with an interacting level

is feasible, the principle of parsimony should favor the model with fewer parameters.

In addition, we observe that sometimes a peak in the Fano factor shows up. This hap-

pens, for example, at the step between F1 and F2 for ΓL = ΓR, as seen in Fig. 4.6. The

peak height 0.5625 exceeds that of the adjacent plateaus, 1/2 and 5/9. These features

can even appear in the regime of negligible Coulomb charging energy, as previously

shown in Ref. [63]. However, we point out that the behavior at the steps is going to be

strongly affected by second-order tunneling events, as will be discussed in section 4.3.

For example, the current steps will show additional broadening due to the intrinsic line

width Γ. The plateau values, on the other hand, will mostly not be affected by second

order effects. However, we will show that this is not the case in the Coulomb-blockade

regime, since here second order effects will dominate the first order processes. This is,

why we did not give values for the Fano factor in Tab. 4.1 for the plateau number 0.

But also in the regime of finite bias voltage, deviations to the first order predictions

may appear, when higher order processes gain importance over the first order ones (for

example due to suppression of sequential tunneling because of asymmetric couplings).

We therefore may summerize the main features of first order transport as follows:

I) The electronic structure of the system, defined by energy parameters will always

determine the step positions of the transport curves, connecting two regions with

different number of ’transport channels’. The number of such steps is therefore directly

linked to the number of transport channels or excitation energies.

II) The steps are broadened only by the temperature. This broadening has been

found in literature to be around 5.44 kBT . The relatively large broadening with a

factor of 5.44 is due to the fact that the Fermi functions do not determine directly

the current and shot noise. The transport curves are composed of transition rates and

probabilities in a non-linear way, where a temperature broadening enters as well. The
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temperature is controlled reasonably well in experiment and therefore reflects another

fixed parameter.

III) The coupling parameters, being the last free parameters in our model, determine

the plateau heights of the transport curves and can be determined, when all of the

other parameters have been fixed. As discussed in chapter 2 and as we confirmed here,

for the Fano factor values between 1/2 and 1 are typical (’sub-Poissonian noise’). In

general however more than only two coupling parameters can determine the transport

through the mesoscopic region. Even for the single level Anderson model, there may

be four parameters, when considering the couplings to be spin dependent. But also

for this spin-dependent model analytical expressions of the plateaus can be derived

(see Tabs. 4.3, 4.4, 4.5, 4.6). In the low bias regime the first plateaus contributing

to transport can be determined from the expressions we discuss in our tables. This is

valid also for a system with more than one level and thus helpful to study even multi-

level systems containing a large number of free coupling parameters. An iterative

determination of additional parameters, when considering additional plateaus at larger

bias can be imagined. A comparison of plateaus at positive and negative bias for the

current, shot noise and the Fano factor helps to definitely fix these parameters.

IV) The only regime, where ’orthodox theory’ fails in a sense, is the Coulomb-

blockade regime. Aside of the qualitative prediction of a transport blockade only

for sufficiently large temperatures we can trust the predictions. Here, second order

calculations are unavoidable if a quantitative description of transport is asked for. We

will continue the discussion of this point therefore in section 4.3, where second order

results are presented.

The features I-III can be studied on the basis of a first order theory, and IV needs the

application of second order calculations. There are two further features of particular

interest, which have to be discussed within a complete picture considering sequential

as well as co-tunneling processes, since an interplay of both kinds of effects will become

important.

V) As we have seen, there may appear peaks in the Fano factor in the regions of the

broadened steps. A peak and even a peak-dip structure can be observed under

certain conditions even in the shot noise. Here we are in a region, which will be

affected by stronger coupling to the electrodes. It therefore depends on the absolute

height (depth) of such a structure as well as the stability of this effect, whether first or

second order (or both) will give rise to such a behavior. Such an interplay of first and

second order processes will be relevant especially in the crossover from the Coulomb-

blockade to the finite bias regime. We will therefore discuss this point in more detail

in section 4.3.

VI) Finally the presence of a finite Coulomb interaction accompanied by asym-

metric coupling parameters can lead to the most striking effects in transport. In the
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current a negative differential conductance (NDC) and in the noise a strong suppres-

sion or a large enhancement may be observed. Besides the typical values between 1/2

and 1, the Fano factor may show super-Poissonian (F > 1) or sub-Poissonian behavior

with values even below 1/2. The identification of physical mechanisms leading to such

a behavior will be our concern for the rest of this chapter. We will discuss several

systems, where such ’anormalous’ transport behavior arises.

Magnetic leads

In section 4.1, we introduced the models A1 and A2, allowing for a description of

a single level system coupled to magnetically polarized leads. In Fig. 4.7 the effect

of finite polarization on the coupling to the leads is illustrated for the anti-parallel

(AP ) and the two parallel (P±) configurations. For sake of simplicity we indicate only
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Figure 4.7: Sketch of the different spin-polarization configurations as introduced

in model A1. Crosses indicate which coupling parameters are suppressed with

respect to the others for a finite polarization. The anti-parallel configuration AP

is illustrated in the upper panel for a negative (left side) and a positive (right side)

bias situation. The two parallel configurations P± (lower panel) have symmetric

behavior if the bias is reversed.

the two lowest excitation energies of this model (ε↓ and ε↑). The sketches have to be

understood in such way that the lower line defines the energy, where transitions between

states ↓↔ 0 are allowed and the upper one, where transitions between states ↑↔ 0 are

allowed. The crosses in Fig. 4.7 indicate which coupling parameters are suppressed

with respect to the others for a finite polarization. It thus becomes immediately clear
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i 0 1 2 3 4

Ii [e/h̄] 0 (1−p2)
2

2(1−p2)
(3+p2)

(3∓p−3p2±p3)
4

(1 − p2)

Si [e2/h̄] 0 (1−p4)
2

4(1±p)(5∓5p+14p2∓14p3−3p4±3p5)
(3+p2)3

(15±4p−9p2∓16p3−3p4±12p5−3p6)
16

(1 − p4)

Fi − (1+p2)
2

(5+14p2−3p4)
(3+p2)2

(5±3p+3p2∓3p3)
8

(1+p2)
2

Table 4.3: Current, shot noise and Fano factor for the different plateaus as dis-

cussed in Tab. 4.1 for the anti-parallel configuration (AP ). Current and shot noise

are normalized to Inorm and Snorm, such that the plateau values depend only on

the polarization. The upper (lower) sign is due to a positive (negative) bias.

that the two parallel configurations will show a symmetric behavior upon reversing of

the bias voltage (exchange of µL and µR), whereas the anti-parallel configuration does

not. Equivalently we can understand the configurations as introduced with the model

A2 (F-D-N, N-D-F) to have fixed couplings on either the left or the right side, whereas

the opposite side may be polarized, by reducing the coupling to the spin ↑ or ↓.

Analytic expressions for the possible plateaus of the magnetic systems are found in

the same way as for the single level system with normal leads. They are given in

Tabs. 4.3, 4.4, 4.5, 4.6. The plateau heights are determined now by the strength of

the polarization p, which may have values between 0 and 1. The values for the anti-

parallel configuration are given in Tab. 4.3, where current and shot noise have been

normalized to the values they would reach in the large bias regime in the unpolarized

case (Inorm, Snorm). These are the same values we introduced at the beginning of this

section. It can be seen immediately, that for p = 0 the plateaus with number 4 lead

to I4 = 1, S4 = 1 and F4 = 1/2 as expected. The upper sign in Tab. 4.3 is due to a

positive bias voltage and the lower sign due to a negative one. The opposite choice

of the anti-parallel configuration in A1 would hence be modeled by exchanging the

upper and lower signs and therefore does not yield additional information. Tab. 4.3

can be used the same way as Tab. 4.1 and thus allows for a consideration of arbitrary

transport situations, when using Tab. 4.2.

The results for the two parallel configurations are given in Tab. 4.4 correspondingly,

where the upper sign is due to the configuration P+, and the lower due to P−. The

expression are the same for negative and positive bias.

For the F-D-N and N-D-F configurations the plateau values are shown in Tabs. 4.5
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i 0 1 2 3 4

Ii [e/h̄] 0 (1±p)
2

2
3

(3±p)
4

1

Si [e2/h̄] 0 (1±p)
2

4
27

(5+3p2)
(1−p2)

(15±13p+5p2∓p3)
16(1±p)

1

Fi − 1
2

1
9

(5+3p2)
(1−p2)

(15±13p+5p2∓p3)
8(1±p)(3±p)

1
2

Table 4.4: Current, shot noise and Fano factor for the different plateaus as dis-

cussed in Tab. 4.1 for the parallel configuration. The plateau values depend only

on the polarization. The upper (lower) sign is due to the configuration P+ (P−).

and 4.6. Here, the upper signs reflect situations of suppressed couplings to the spin

↑ and the lower signs reflect situations of suppressed couplings to the spin ↓. The

tables describe the transport at positive finite bias. It can be verified again because of

symmetry reasons, that the plateaus for the negative bias region can be extracted, by

exchanging the two tables.

As a consistency check for a vanishing polarization and symmetric choice of the left and

right coupling to the reservoirs, all expressions presented in the five tables Tabs. 4.1, 4.3,

4.4, 4.5, 4.6 give the same values.

It is clear that the different tables presented above provide a lot of information, which

could be visualized in a large number of plots. However our main interest consists in

a discussion of physical mechanisms leading to a behavior of the current, shot noise

and the Fano factor different to what has been found so far. An example of such

’anormalous’ behavior would be, if the normalized current and shot noise show a non-

monotonic behavior for a sequence of plateaus (NDC or negative differential noise),

have values larger than unity (enhancement) or if the Fano factor has values others

than between 1/2 and 1.

Let us use the same energy parameters as used for the discussion of Fig. 4.4. In

this case the sequence of plateau values is given in the same order as presented in

the tables. For the two parallel configurations in Tab. 4.4 we find a non-monotonic

behavior in the current for larger polarization of the leads. A NDC behavior is found

for the configuration P+ between the first and second plateau, where in an extreme case

(p→ 1) the current drops down from a value 1 to 2/3. For the negative configuration

P− this behavior can be seen between the plateaus two and three, where the current

drops down from 2/3 to 1/2 for strong polarization. For the shot noise we find a strong
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i 0 1 2 3 4

Ii [e/h̄] 0 (1±p)
(2±p)

2
3

(3−p2)
(4−p2)

2(2−p2)
(4−p2)

Si [e2/h̄] 0 2(1±p)(2±2p+p2)
(2±p)3

20
27

(60±4p−55p2∓5p3+17p4±p5−2p6)
(4−p2)3

4(16−12p2+2p4−p6)
(4−p2)3

Fi − (2±2p+p2)
(2±p)2

5
9

60±4p−55p2∓5p3+17p4±p5−2p6

2(4−p2)2(3−p2)
(16−12p2+2p4−p6)

(4−p2)2(2−p2)

Table 4.5: Current, shot noise and Fano factor for the different plateaus as dis-

cussed in Tab. 4.1 for a ferromagnet-dot-normal leads system (F-D-N). The upper

(lower) sign is due to suppression of the coupling to spin ↑ (↓).

enhancement (theoretically S → ∞) for one or two plateaus. Due to the finite values of

the current this implies a super-Poissonian Fano factor. Such a strong enhancement of

the shot noise has been discussed in spin-dependent transport [152, 153, 154] and is due

to a dynamical bunching of electrons. Consider the second plateau (for configuration

P+), where the super-Poissonian behavior shows up for the first time. On this plateau,

the state with spin ↑ lies in the window for sequential transport (additionally to the

other spin state) and contributes to the transport with about the same probability as

the state with spin ↓. However, due to the blocking of the tunneling through the state

with spin ↑ (compare with Fig. 4.7), many electrons with spin ↓ will tunnel through

the system until once the spin ↑ state is realized. Due to suppressed coupling the dot

stays in the spin ↑ state for a long time. Both spins contribute to transport but have a

very different role. Note that this effect would not show up for a vanishing Coulomb-

interaction (the plateau would not exist). The mechanism of bunching is therefore

due to a finite interaction together with a finite polarization (asymmetry of coupling

parameters).

Another mechanism leading to super-Poissonian behavior of the Fano factor can be

found for the system coupled to a normal metal on the left, but to ferromagnetic

leads on the right side (N-D-F as discussed in Tab. 4.6). NDC is found when the spin

state with the larger energy (spin ↑) is suppressed, as can be seen from the sequence of

plateaus one and two. Here, the current and shot noise ’collapses’ (for p→ 1), although

transport through the lower spin state ↓ is possible in principle (transport through state

↑ would be possible in the absence of polarization). However, due to the suppressed

coupling of the state with spin ↑ to the right reservoir, the probability to be in this

state is practically unity and since double occupancy is still energetically forbidden,
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i 0 1 2 3 4

Ii [e/h̄] 0 (1±p)
(2±p)

2(1−p2)
(3−p2)

(3±p−2p2)
(4−p2)

2(2−p2)
(4−p2)

Si [e2/h̄] 0 2(1±p)(2±2p+p2)
(2±p)3

4(1−p2)(5+6p2+p4)
(3−p2)3

(60∓72p+33p2∓18p3+11p4∓4p5)(1±p)
(4−p2)3

4(16−12p2+2p4−p6)
(4−p2)3

Fi − (2±2p+p2)
(2±p)2

(5+6p2+p4)
(3−p2)2

(60∓72p+33p2∓18p3+11p4∓4p5)
2(4−p2)2(3∓2p)

(16−12p2+2p4−p6)
(4−p2)2(2−p2)

Table 4.6: Current, shot noise and Fano factor for the different plateaus as dis-

cussed in Tab. 4.1 for a normal-dot-ferromagnet system (N-D-F).The upper (lower)

sign is due to suppression of the coupling to spin ↑ (↓).

the other spin state is blocked. The origin of this blocking effect is due to a finite

Coulomb interaction and asymmetric coupling to the reservoirs again, although the

shot noise behaves the opposite way as before. The finite super-Poissonian value of the

Fano factor (F2 = 3 for p = 1 in Tab. 4.6) can be explained by the second term of the

shot noise formula in first order (see chapter 3), which describes a propagation between

two current events. This propagator involves processes leading into an empty state,

which allows to tunnel onto the dot system again. However the dot will immediately

be occupied by the spin ↑ state again. This is why the shot noise is a factor larger

compared to the current, but vanishes as well (as p→ 1). The effect is destroyed again

at a bias voltage, where the Coulomb interaction can be overcome energetically and

transport via the doubly occupied state sets in.

This blocking effect is, in principle, very similar to the processes that lead to a super-

Poissonian noise in the Coulomb-blockade regime. Here, the propagator can lead the

system into an empty state, however the ground state will be occupied immediately

again. In our example above we are in a finite bias situation, such that the current

and shot noise are not suppressed exponentially as in the Coulomb-blockade. However,

strong polarization may suppress processes in first order algebraically, where second

order processes are still unaffected. Hence, a complete picture of sequential and co-

tunneling processes may be important as p→ 1.

To summarize our findings, we characterized the current, shot noise and Fano factor

for a single level system for arbitrary transport situations in lowest order. In the case of

spin-dependent transport we identified two mechanisms leading to a super-Poissonian

noise. The current in this case can show a NDC behavior, which however is not

necessary for a super-Poissonian Fano factor. The noise may be strongly suppressed or

enhanced. These mechanisms require a finite Coulomb interaction and an asymmetric
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coupling situation giving rise to a dynamical bunching of electrons or the blocking of

transport.

Current and shot noise in nanoscopic systems coupled to ferromagnetic leads have been

studied theoretically in first order of the coupling to the leads in [152, 153, 154, 155, 156,

157, 158], for coherent transport in [159, 160] or diffusive wires with diffusion equations

in [161]. Experimental work is mainly concerned with spectroscopy [162, 163]. Studies

going beyond a first order approach are rare or still missing, especially for the shot

noise.

In section 4.3.2 we will therefore discuss second order (co-tunneling) results for the

current, shot noise and Fano factor, completing the limited sequential tunneling picture

of first order. The tables presented in this section may serve as additional background

to our discussion there. The model Hamiltonian A we considered here, is the simplest

one that exhibits mechanisms leading to super-Poissonian noise. However, more than

two coupling parameters are necessary to describe such a behavior. As we will see

in the next section, a mapping onto a two-level system is relatively simple, in lowest

order, leading to similar effects as we identified above.

4.2.2 Multi-level systems

We want to study a multi-level system as introduced with model B. The difference to a

single level system is obviously a larger number of available states (transition channels),

but also the possibility to include other kinds of interactions. The consideration of a

charging energy EC (energy cost to add an electron to the system) in addition to

the ’Hubbard’ interaction U (energy cost to doubly occupy a certain level) allows for

a separation of different charge sectors (for the single level model the energies ε, U

can account for the effect of EC). This is also the simplest model allowing to describe

relaxation effects, due to emission or absorption of bosons. This allows to study another

kind of effects in quantum dots or molecules, and to identify the physics, which is typical

for these kinds of effects.

We consider a system which is uncharged at zero bias, with energy parameters ε1 =

−100Γ, ε2 = 100Γ, U = 300Γ and EC = 200Γ. The temperature is chosen to be

kBT = 10Γ again. An illustrative sketch of the system under study has been given in

Fig. 4.2. The energy to occupy the first single particle level is ε1 + Ec = 100Γ (state

D1). Without coupling to the boson bath we find a negative differential conductance

(NDC) regime, see Fig. 4.8 in dependence on the different coupling strength of the two

levels and the reservoirs, as was previously discussed in Refs. [120, 164, 151, 150] and

as we found also in the last section. The shot noise behaves qualitatively similar. If we

chose equal tunnel coupling, Γr
i = Γ (solid line), we find that current and shot noise

S(1) increase, each time as a new transport ”channel” (controlled by the excitation
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Figure 4.8: Current I(1) and shot noise S(1) vs. voltage for the energy parameters

as discussed in the text, symmetric bias and ΓL
1 = ΓL

2 = ΓR
1 = Γ. The height of the

plateaus labeled by i = 0, 1, 2 are discussed in the text and depend on the choice of

the coupling parameters. For suppressed coupling ΓR
2 current and shot noise break

down leading to negative differential conductance (NDC) at a threshold energy.

The curves are normalized to Inorm = (e/~)2Γ and Snorm = (e2/~)2Γ, respectively.

energies) opens. This leads to plateaus, separated by thermally broadened steps. The

first four plateaus are shown and discussed in the following. At a bias voltage of

eVb/2Γ = 100, sequential transport through the state D1 with one electron on the

lower lying level becomes possible. At eVb/2Γ = 300, additionally transport through

the D2 state opens up, with the upper level being occupied with one electron. The

different regions of interest are labeled by Ii, Si with i = 0, 1, 2. For a bias voltage above

eVb/2Γ = 500, transport channels with two or more electrons on the system open up.

In the large-bias regime (not indicated in the plots) and for symmetric coupling, the

values Inorm = (e/~)2Γ and Snorm = (e2/~)2Γ are reached (note that due to the choice

of the couplings, the sum of all electrode couplings is 4Γ and not Γ, which leads to

other normalization factors as before).

If now the coupling parameter ΓR
2 is suppressed with respect to the other couplings,

this leads to suppressed curves for the current and shot noise in region 2, resulting in

NDC at the threshold of eVb/2Γ = 300, when the state D2 becomes relevant, see in

Fig. 4.8 for ΓR
2 = 0.1Γ and 0.01Γ. The reason for the NDC is a combination of the Pauli

principle, Coulomb blockade and suppressed coupling, as discussed in Ref. [120, 121].

It is, in principle, the same mechanism which led to the blocking effect, we discussed in

the last section. In the present case, an electron, entering the upper level from the left

electrode, cannot leave the system, if the coupling of this level to the right electrode

is entirely suppressed. Transport through the lower level is also not possible, since
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Figure 4.9: Fano factor F (1) vs. bias voltage for the same parameters as in Fig. 4.8

and various coupling parameters ΓR
2 . The NDC effect results in a super-Poissonian

value for the Fano factor.

the simultaneous occupation of both levels is energetically forbidden in the considered

bias regime. The electron gets stuck in the upper level blocking other electrons from

tunneling through the system. Consequently, the current collapses. Since in lowest-

order perturbation theory in Γ the plateau heights are given by the coupling parameters

only, we find, that for ΓR
2 < 2/3Γ NDC can be observed, whereas the shot noise is

suppressed below its lower bias plateau only, if ΓR
2 < 0.1Γ.

If the shot noise is sufficiently suppressed in the NDC region, a peak in the shot noise

appears around the resonance energy of the second level. This peak is due to temper-

ature induced fluctuations that in certain situations enhance the shot noise over the

surrounding plateau values (where charge fluctuations due to temperature are exponen-

tially suppressed). As the resonance is approached from lower bias, within the range of

temperature broadening the noise ”detects” the opening of the second transport chan-

nel and increases. If the bias is beyond the resonance, the redistribution of occupation

has taken place and the noise is algebraically suppressed. The result is the observed

peak in the noise with width of the temperature. However, the peak height is only

determined by the coupling parameters and is independent of the temperature. The

current never shows such a peak, as it decreases proportional to the loss of occupation

of the first level, the transport channel with ”good” coupling.

The effect of NDC on the Fano factor is shown in Fig. 4.9. The plateau for bias voltages

below eVb/2Γ = 100 (region 0) corresponds to the Coulomb blockade regime, where

transport is exponentially suppressed. In the regions 1 (2) transport through the state

D1 (D2) is possible. The suppressed coupling strength ΓR
2 does not affect the plateau

height F1, whereas F2 reaches values larger then 1, and up to 3 [151].
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Figure 4.10: Current I1 and shot noise S1 vs. voltage for the same parameters as

in Fig. 4.8 but fixed coupling ΓR
2 = 0.01Γ. Coupling to a bosonic bath allows for

relaxation processes. The coupling parameter αph which is varied relative to Γ.

The NDC effect is destroyed by strong relaxation.

This ”super-Poissonian” noise (F > 1) is predicted for ΓR
2 < 0.44Γ. If the bias is

larger then eVb/2Γ = 500 tunneling through states is allowed where both levels are

occupied simultaneously, i.e. the system can be doubly occupied. The Fano factor

is sub-Poissonian again (F < 1) in this regime. Comparing the Figs. 4.8 and 4.9

graphically allows one to determine roughly the strength of the suppression of ΓR
2 .

Let us consider next the effect of relaxation processes on the current and shot noise

curves. In Fig. 4.10 we keep the same set of energy parameters as in Fig. 4.8 and

fix the coupling strength ΓR
2 at 0.01Γ suppressed relatively to the other dot-electrode

couplings. Now a parameter αph describes the coupling of the system with a boson

bath. [A value of αph = 0.01Γ is below even the relatively weak dipole coupling of

photons to molecule states of small aromatic molecules such as benzene [121].] For

this small photon coupling (solid line) current and shot noise are still reduced in region

2 relative to the plateau heights I1 = 1/3 and S1 = 10/27 in region 1. If now αph

increases, we find that both I(1) and S(1) also increase in the NDC region, at least

initially. If the value αph = 2Γ is exceeded, the NDC is gone.

The behavior of the shot noise peak at the resonance energy is now further complicated

by the effect of relaxation. The noise value at the resonance energy is non-monotonic,

i.e. it first decreases and then increases again with increasing relaxation. This is due

to redistribution of occupation by the relaxation processes in favor of the first level.

For our chosen parameters, the value αph = 2Γ is larger than a reasonable molecule-

photon coupling. However, phonon (vibrational) couplings could easily be strong
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Figure 4.11: Fano factor vs. bias voltage for for the same parameters as in Fig. 4.10

and various couplings to a bosonic bath αph. The super-Poissonian value of the

Fano factor vanishes due to strong relaxation processes.

enough to achieve such fast relaxation. On the other hand, molecule vibrations have

a discrete spectrum, much different to the power law assumed in our calculations (see

definition of model B). Relaxation due to phonons can be only effective, if the ener-

gies of a phonon and the electronic excitation match within the smearing provided by

temperature. This obviously depends on the details of the molecule and can not be

discussed within the model considered here.

The destruction of NDC by bosonic transition rates is easily explained. An electron

which formerly was stuck on the upper level can now relax onto the lower one, from

which tunneling to the right electrode is possible via the coupling ΓR
1 .

For the Fano factor in Fig. 4.11 an increase of αph leads to a decreasing value for the

plateau F2, which passes the Poissonian value F = 1 at αph ∼ 0.34Γ. Different to the

current, however, the Fano factor does not show monotonic behavior with increasing

αph. The dashed-dotted line corresponding to αph = 1Γ lies below the dotted one with

αph = 10Γ. The non-monotonic behavior is even more pronounced for the shot noise. It

has a maximum and a minimum for 0.2 ∼ αph/Γ ∼ 1 before increasing again at αph > Γ.

This has been discussed in further detail in [7]. The richness of the noise behavior in

the NDC regime might allow a detailed determination of coupling-parameter values.

Since in lowest-order perturbation theory temperature only leads to a thermal broad-

ening of the steps, the plateau heights in the different transport regimes are given by

the coupling parameters, both the tunnel coupling as well as the relaxation strength.

However, note that the actual relaxation rate depends also on the position of the en-

ergy levels via the boson density of states. This will complicate matters in the general
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case with many levels, which are not equidistant from each other. In our case with two

levels, we can extract analytical expressions for the plateau values of current, noise and

Fano factor within the low bias transport regimes as indicated in the Figs. 4.8 to 4.11.

We find for the plateau of the NDC-region 2 (S2 = 2I2F2)

I2 =
ΓR

1 (αph + ΓR
2 )(ΓL

1 + ΓL
2 )/Γ

2ΓL
2 (αph + ΓR

1 ) + (2ΓL
1 + ΓR

1 )(αph + ΓR
2 )

(4.8)

for the current and

F2 =
αph(αph+2ΓR

2 )[(ΓR
1 )2+4(ΓL

1 +ΓL
2 )2]+[8ΓL

1ΓL
2 (ΓR

1 −ΓR
2 )2+4(ΓL

1 ΓR
2 +ΓL

2 ΓR
1 )2+(ΓR

1 ΓR
2 )2]

[2ΓL
2 (αph+ΓR

1 )+(2ΓL
1 +ΓR

1 )(αph+ΓR
2 )]2

(4.9)

for the Fano factor.

Since only bosonic transition between singly occupied levels 1 and 2 are possible in this

bias region, the above expressions include only one bosonic rate αph(∆E = ε2 − ε1).

Since the temperature is much smaller than ∆E, only relaxation processes matter for

the plateau values.

In the absence of the photonic coupling and for electronic coupling parameters chosen

such as in Fig. 4.9, where ΓR
2 is extremely suppressed, we find the Fano factor to take

a value F2 = 3. Comparison with plateau number 2 in Tab. 4.6 from the last section

shows the same result for strong polarization p→ 1. This is no coincidence, but shows

that a mapping from the single, spin-dependent model onto a two level model is indeed

possible. The couplings Γσ
r in the first model are related to the couplings Γr

i of the

other (two spin states ↔ two levels). In order to account for the spin in the two level

system again, one has to realize, that there are two possibilities to enter the system

from the left electrode (positive bias choice) but only one to tunnel out into the right

electrode. When choosing 2Γσ
L = ΓL

i and Γσ
R = ΓR

i , both models describe the same

physics in the low bias regime, as discussed here. When comparing the parameter

settings of the models A3 and B, it can be easily seen that this was exactly our choice.

The underlying physical mechanisms are (as has been discussed in detail) in the first

case due to a ’spin blockade’ and in the latter due to a blocked transport level.

For completeness, we also give the expressions for the transport regime 1 (transport

through the lower level only). They can be found from the above by setting the

couplings ΓL
2 and αph equal to 0. Then electrons can never enter the upper level

at positive bias, leading to an effective one level system with the result (compare to

Tab. 4.1 second plateau)

I1 =
2ΓR

1 ΓL
1

(2ΓL
1 + ΓR

1 )

1

2Γ
; F1 =

4(ΓL
1 )

2
+ (ΓR

1 )
2

(2ΓL
1 + ΓR

1 )2
. (4.10)

The derivation of analytical expressions in the low bias regime allows us a quick study

of current, noise and Fano factor for arbitrary coupling situations. For the special
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Figure 4.12: Contour-plot of the Fano factor (plateau F2) with the choice ΓL,R
1 =

Γ − ΓL,R
2 and αph = 0. The totally symmetric situation is given for ΓL

1 = ΓR
1 =

0.5Γ. The Fano factor can become arbitrarily large, if the system is sufficiently

asymmetric.

situation where ΓL,R
1 = Γ − ΓL,R

2 and αph = 0 the Fano factor F2 is presented in a

contour-plot (see Fig. 4.12). This choice allows the coupling parameters to the left and

right reservoir to vary (independently) between 0 and Γ, while having the sum of the

couplings to each reservoir fixed. Although not all of the possible coupling situations

can be visualized this way, the following features which can be extracted from this

plot are valid in general: a super-Poissonian Fano factor F > 1 can only be found, if

ΓR
1 6= ΓR

2 and additionally ΓL
1 6= 0,ΓL

2 6= 0. Furthermore a Fano factor F > 3 is possible

only if ΓL
1 6= ΓL

2 besides the above conditions. In the absence of relaxation processes

(αph = 0) we can also find a point symmetry of F2. This symmetry is broken if αph 6= 0,

as absorption and emission rates of bosons differ due to the boson occupation factors.

Besides the super-Poissonian noise with Fano factors F > 1 due to Coulomb correla-

tions and values between 1/2 < F < 1 in the sub-Poissonian regime, we can also find

values of coupling parameters in which the Fano factor drops to values below 1/2. This

behavior, however, can only be observed in the presence of relaxation processes, when

the coupling strength ΓL
1 and ΓR

2 are suppressed relative to the other tunnel couplings.

If the above couplings are vanishing, there is only one path for the electrons to tunnel

through the system, namely from the left electrode to the upper level, then via relax-

ation onto the lower level until finally the electrons leave the system by tunneling to

the right electrode. By choosing specifically ΓL
1 = ΓR

2 = 0 and ΓR
1 = 2ΓL

2 = αph the

value of the Fano factor can be minimized and is found to be 1/3. The probabilities

to find an unoccupied system or an occupied one with one electron in the lower level
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doublet or in upper level doublet are all equal in this case (P0 = PD1
= PD2

= 1/3).

This special situation reminds of a system, where a chain of quantum dots are coupled

in series, having inter-dot tunnel couplings of the same size than the couplings of the

chain ends to the leads. For an infinite chain of such dots (effectively a one-dimensional

wire) the Fano factor also reaches 1/3 [157, 158].

To summarize our discussion of first order transport properties in nanoscopic sys-

tems, we found, that excitation energies show up in steps of the current and shot noise

voltage characteristics. The effect of the temperature of the reservoirs, to a broad-

ening of the steps only, allows for an extraction of plateau values depending only on

the coupling parameters of the system to the leads. The availability of analytic ex-

pressions is a big advantage, since free parameters can be fixed successively and even

the presence and kind of interaction effects, relaxation effects or coupling asymmetries

can be detected. This would not be possible by considering the current only, which

provides much more limited information. The observation of super-Poissonian noise,

or even a sub-Poissonian Fano factor with values below 1/2, can tell much about trans-

port properties, system parameters, etc. since they are due to characteristic physical

mechanisms.
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4.3 Co-tunneling

We will focus again on model A as described in chapter 4.1. Elastic and inelastic

co-tunneling processes are the additional processes we are including in second order

perturbation theory. Elastic processes do not change the energy of the system and

have been explained in chapter 3.1.3, whereas inelastic processes modify the energy

of the dot (for example into another spin state as shown in Fig. 4.1 or onto another

level in the case of a multi-level system). Elastic co-tunneling is therefore present even

in equilibrium, but for inelastic processes a finite bias voltage is necessary, which is

determined by an energy scale εco (energy needed for the excitation). For our single

level model, this energy is due to the spin-splitting and thus εco = ∆. The energy scale,

which is relevant for sequential processes to take place (sequential threshold) is defined

by εseq = |ε↓| = |ε−∆/2|. As we discussed in some detail in the last section, the model

under consideration allows for a description of spin-dependent transport. Furthermore

it is possible to find parallels to more complex multi-level systems. However, an exact

mapping onto a two level system is not possible anymore for second order processes.

In the following we study higher order transport in a quantum dot structure coupled

to normal and ferromagnetic leads.

4.3.1 Normal leads

Higher-order transport modifies the current and shot noise in two different ways. First,

it introduces an additional broadening of the steps which is effectively given by the

sum of Γ and T . Second, it allows for transport in the Coulomb-blockade region at low

bias, where sequential tunneling is suppressed. But it may also modify the transport

properties at larger bias, when strongly asymmetric coupling situations are present. A

discussion of higher order shot noise in the Coulomb-blockade regime has been given

by [104, 105], and an extension to the finite bias regime was provided by us [9, 11, 10].

With increasing coupling strength Γ, second- and eventually also higher-order correc-

tions to transport become more and more important. To illustrate the validity range

of our second-order perturbation expansion we first consider the non-interacting limit,

U = 0, since in this case exact results [5] are available for the current and shot noise.

The formulas have been discussed at the end of chapter 2.1. In Fig. 4.13 we compare

first-order (I(1), S(1)), (first- plus) second-order (I, S), and exact current and noise

(Iexact, Sexact) for the parameter set ε↓ = −30Γ, ε↑ = 10Γ (or ε = −10Γ,∆ = 40Γ),

kBT = 2Γ, ΓL = ΓR = Γ/2 vs. the bias voltage scaled as eVb/2Γ. Both current

and shot noise are normalized again to the value, the first order contributions reach

in the large bias regime and for a coupling Γvar = 1Γ. The normalization factors are

Inorm = (e/2~)Γ and Snorm = (e2/2~)Γ. (Note that the temperature is fixed, to a

value smaller than the 5 − 10Γ we should usually use in first order. All parameters
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Figure 4.13: Current I and shot noise S vs bias voltage for kBT = 2Γ, ε↓ =

−30Γ, ε↑ = 10Γ, U = 0Γ, and ΓL = ΓR = Γ/2. First order (dotted lines) and

second order (dashed lines) are compared to the exact results (solid lines) for three

coupling parameters Γvar = 1, 2, 4 times the reference coupling Γ = kBT/2. Current

and shot noise are normalized to Inorm = (e/2~)Γ and Snorm = (e2/2~)Γ.

are expressed in terms of a fixed energy parameter Γ. The coupling strength however

is given by a variable parameter Γvar. This is to tune the coupling between a weak

and an intermediate coupling regime and to test, where our theory breaks down. The

coupling will be fixed later on.)

Outside the Coulomb-blockade regime, the second-order corrections (dashed lines) to

sequential tunneling (dotted lines) start to become important for a coupling of about

Γvar . 0.5kBT . As long as the coupling is smaller than 1kBT , the exact current and

noise (solid lines) are almost perfectly reproduced by second-order perturbation theory,

while the first order sequential-tunneling results clearly deviate. For a coupling strength

about Γvar ∼ 2kBT third-order contributions start to play a role, at least for the noise,

where unphysical non-monotonicities arise around the steps. Therefore, we restrict

ourselves to Γvar ≤ kBT for the following discussion.

The elastic co-tunneling processes (which do not change the dot state or its energy)

allow for an electron exchange with the reservoirs via an intermediate virtual state.

This leads to a finite linear conductance G = dI/dVb|Vb=0. The noise is also non-
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Figure 4.14: Current I and conductance dI/dVb (inset) vs bias voltage for ε↓ =

−30Γ, ε↑ = 10Γ, U = 80Γ and ΓL = ΓR = Γ/2 for various values Γvar and kBT .

The broadening of the first step due to Γvar and kBT is shown in the inset. The

dashed and dotted curves with the same (Γvar + kBT ) have about the same width.

The current is normalized to Inorm = (e/2~)Γvar.

vanishing at zero bias, known from equilibrium fluctuation-dissipation theorem (FDT),

S = 4kBTG. In the Coulomb blockade regime the FDT can be extended to non-

equilibrium [104] and takes the form S(2)(Vb)/2eI
(2)(Vb) = coth(eVb/2kBT ). Our theory

fulfills this relation, however, we stress that it holds only in the regime of purely elastic

co-tunneling processes. In Fig. 4.14 we show the current I normalized to Inorm =

(e/2~)Γvar. The normalization factor is chosen variable now, to keep the current curves

fixed in height. We consider the same set of energy parameters as in Fig. 4.13 but with

a finite interaction U = 80Γ. Since the bias is applied symmetrically, the dot preferably

occupies the state with spin ↓ (Coulomb blockade) until it can be emptied due to first

order hopping processes around eVb/2Γ = εseq/Γ = 30 (first step). Further steps arise

around eVb/2Γ = 50 and 90 due to the double occupied dot state. This parameter set

is similar to the experimental situation of Ref. [55] for a quantum dot with occupation

N = 2. In Fig. 3 of that paper, a conductance feature (step) is observed inside

the Coulomb blockade diamond that is attributed to inelastic co-tunneling processes.

For our model one expects this inelastic co-tunneling feature in the conductance at

a bias of eVb/2Γ = εco/2Γ = ∆/2Γ = 20. This feature is hardly noticeable in the

conductance plot of the inset in Fig. 4.14, because our coupling Γ is relatively weak

and the energy εco is fairly close to the sequential tunneling threshold. However, the

inelastic co-tunneling processes can clearly be observed in the shot noise and the Fano

factor F = S/2eI as discussed below.

We note that the dashed and dotted curves in Fig. 4.14 with same total sum (Γvar+kBT )
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Figure 4.15: Fano factor F = S/2eI vs bias voltage for the same parameter set

as Fig. 4.14 but fixed temperature kBT = 2Γ and various coupling strength Γvar,

smaller then the reference coupling Γ. Inelastic co-tunneling leads to a super-

Poissonian Fano factor if the bias is larger than εco/2Γ = 20. First order processes

may also lead to a super-Poissonian value at a scale 2ε↑/2Γ = 10. The crossover

between these energy scales runs over three orders of magnitude in the coupling.

Outside the Coulomb blockade regime the first order results are recovered already

at about Γvar/kBT ∼ 0.1. The inset shows a sketch of the transport situation at

eVb = εco.

almost lie on top of each other. The differential conductance plot (inset) shows that the

temperature effect is a little stronger: the dashed curve with the highest temperature

has the lowest peak. The full width of the conductance peaks is between (10− 16)Γ ∼
6(Γvar+kBT ), as compared to 5.44 kBT for pure sequential tunneling [55]. We also note

a shift of the peak position from the sequential tunneling value eVb/2Γ to somewhat

lower bias voltages, indicating a renormalization of the level positions εσ.

The Fano factor F = S/2eI for a fixed temperature and a sequence of coupling ratios

Γvar is shown in Fig. 4.15. At low bias, the Fano factor varies as [104] coth(eVb/2kBT )

until it reaches the value 1, as expected for uncorrelated systems. For bias voltages

around the spin-flip excitation energy εco/2Γ = 20, the Fano factor becomes super-

Poissonian [104], F > 1. Once sequential tunneling becomes dominant (at a bias ≥ 30),

the Fano factor drops to values between 1 and 1/2.

The super-Poissonian Fano factor appears for bias voltages at which the spin-↑ level

acquires some finite occupation probability. This can be either due to inelastic spin-

flip co-tunneling, appearing at a bias ∼ εco/2Γ = 20, or due to first order tunneling

processes [152] at a bias ∼ 2ε↑/2Γ = 10. The first order processes are exponentially
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suppressed but, for the chosen parameters, still finite [152]. The enhancement of the

noise comes from the second and third term of Eq. (3.44), and, physically, is due to

bunching of the transfered ↑-electrons during the time when this transport channel is

not blocked by the dot being occupied with a ↓-electron. Both the position and the

height of the peak in the Fano factor depend on all system parameters. In Fig. 4.15

we study the dependence on the ratio of the coupling strength to the temperature.

With increasing coupling strength, the peak decreases and moves towards higher bias.

For Γvar = 0.001Γ our result (dotted line) coincides with that of a pure first-order

calculation, which would show no dependence on Γvar/kBT in this plot. At larger

coupling, though, the second-order processes dominate the first order ones, so that

current and noise in the Coulomb blockade regime depend only algebraically and not

exponentially on energy. We emphasize that, since the peak is close to the onset of

sequential tunneling, an analysis purely based on co-tunneling processes [104] would not

be sufficient either. The range of Γvar/kBT ratio over which the co-tunneling dominated

Fano factor crosses over to sequential tunneling covers three orders of magnitude. For

the larger Γvar/kBT values the inelastic co-tunneling effects on the shot noise should

be experimentally accessible [58]. The importance of co-tunneling processes for the

Fano factor at rather weak coupling in the Coulomb blockade regime contrasts with

the situation at larger bias where second-order corrections only become noticeable for

Γvar/kBT ∼ 0.1.

The extreme sensitivity of the Fano factor to the ratio of the coupling strength over

the temperature can be understood even better, when comparing the stationary prob-

abilities of first to second order calculations. For that, we want to keep the parameter

set with ε = −10Γ,∆ = 40Γ, U = 80Γ and kBT = 2Γ. We fix the formerly variable

coupling parameter Γvar to Γ now. A sketch of the situation is given in the inset of

Fig. 4.15.

The stationary probabilities are plotted in Fig. 4.16 in dependence of the bias voltage

eVb/2Γ. For the following discussion first order results will always be indicated by thin

lines, and second order results by thick lines. If the coupling is sufficiently weak, the

two results should become equivalent as co-tunneling contributions can be neglected. In

the finite transport regime above the sequential tunneling threshold equivalent curves

are obtained already for Γvar ∼ 0.1kBT in contrast to the Coulomb blockade regime dis-

cussed above. The first order probabilities (thin lines) show equal values (1/3) starting

around the sequential threshold εseq = 30Γ for the states 0, ↓, ↑, at 50Γ transitions from

↑→ d become possible which reduce the pst
↑ in favor to the pst

↓ and at 90Γ transitions

from all channels into the others are allowed, leading to all probabilities contributing

with 1/4. We find that co-tunneling processes reduce (enhance) probabilities which

dominate (are small) in first order.

This can be seen very drastically in the logarithmic plot in the inset of Fig. 4.16. Since
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Figure 4.16: The stationary probabilities for the parameter set as discussed in the

text and fixed coupling Γ vs. the bias voltage eVb/2Γ. With a logarithmic scale plot

in the inset, first and second order probabilities in the Coulomb-blockade regime

are better resolved. Thinner lines always indicate first order results, thicker lines

the complete first plus second order results.

elastic co-tunneling processes are possible already in equilibrium, the probabilities for

the states 0 and d are non-vanishing here in contrast to first order (which are several

orders of magnitude smaller). Around eVb/2Γ = ∆ inelastic co-tunneling enhances the

probability to be in the state ↑ which also enhances pst
0 since sequential tunneling from

↑→ 0 is energetically possible. The first order probabilities of the states 0 and ↑ are

enhanced the same way due to thermal processes leading out of the state with spin ↓
before the onset of sequential tunneling. They lie on top of each other. It is worth

noting, that the excitation energy at ε↑ = 10Γ does not show up in the probabilities

(neither in first nor in second order).

The probabilities in Fig. 4.16 show that indeed deviations between first and second

order show up mainly around the steps, where big changes of occupations can be

observed, and in the Coulomb-blockade regime, where first order contributions are

suppressed in general.

The two extreme coupling situations in Fig. 4.15 with Γvar = 1 and 0.001 can be

considered as first and second order results of our fixed coupling situation. Together

with the stationary probabilities in Fig. 4.16 we can better understand the different

physical mechanisms in both orders.

To summarize this section, we discussed the validity of our second order calculations

and the additional broadening of the steps in the transport curves due to a stronger

coupling to the leads. For the single level coupled to normal leads (model A3), we



102 CHAPTER 4. RESULTS

found a super-Poissonian Fano factor, at an energy scale εco, which is different to the

scale we would have expected from a first order calculation [εco−εseq]. The situation we

discussed here is only one out of several possible parameter sets. Instead of discussing

a large number of plots, we refer to other publications [10, 11], and to summarize the

possible scenarios for the Fano factor in the Coulomb blockade regime. We restrict

ourselves to a large Coulomb interaction U and an energy ε < 0, such that the ground

state will be an occupied system. All the cases that we exclude with this choice (e.g.

empty ground state) are characterized by a Poissonian behavior of the Fano factor in

first as well as second order. For the more interesting regime that we consider here, we

can identify three different scenarios:

(I) If εco > 2εseq, Poissonian behavior (F = 1) is observed in first as well as second

order in the Coulomb-blockade regime. This situation is not discussed here.

(II) For 2εseq > εco > εseq a super-Poissonian behavior (F > 1) arises at a scale

[εco−εseq] in first and εco in second order. This is the situation we studied in Fig. 4.15.

(III) When εseq > εco a super-Poissonian noise is observed in the whole Coulomb-

blockade regime in first order, whereas in second order still the scale εco determines the

crossover from Poissonian to super-Poissonian behavior. Here, the difference between

first and second order becomes most obvious.

The reason of our choice to discuss situation II here, has been the possibility to compare

first and second order scales. It turns out that for large εseq, when a large bias voltage

is required to arrive at the sequential tunneling regime, the first order predictions do

not only become strongly modified, but may also give contrary predictions compared

to the second order ones.

We want to expand our discussion of the Coulomb-blockade regime by considering the

crossover to the finite transport regime as well, where we find the step structures in the

shot noise to be modified by second order processes. Interesting behavior can be found

for asymmetric coupling situations (as may also be present in a multi-level system) or

spin polarized leads (which we introduced with the model A1).

4.3.2 Ferromagnetic leads

In the following we analyze the shot noise and the Fano-factor in the three different

configurations AP , P+ and P− for the same energy parameters as in the last section.

The current turns out to show mostly a monotonic behavior (NDC is found only in

very special situations) and will thus not be presented in the following. We discuss the

four different situations out of equilibrium, as indicated in Fig. 4.7.

We begin with the discussion of the shot noise in the antiparallel configuration AP

with various polarizations (p = 0.0, p = 0.3, p = 0.5, p = 0.7) of the leads. In Fig. 4.17
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Figure 4.17: Normalized shot noise in the antiparallel configuration AP for the

parameters as in section 4.3.1, but various polarizations of the leads. Correlations

of the electron spins for small polarization are destroyed by a stronger polarization.

Thin lines correspond to first order results and thick lines correspond to first plus

second order results.

we plot the shot noise normalized to Snorm = (e2/2~)Γ vs. the bias voltage eVb/2Γ.

The thin lines, indicating first order results show a monotonic behaviour for increasing

bias voltage, whereas the thick lines (due to first plus second order results) have a

peak-dip structure at the first and the last steps. For stronger polarization of the

leads a reduction of this structure as well as a reduction of the noise plateau values is

observed. The latter behavior is predicted from Tab. 4.3 in first order.

A qualitative new feature we observe in Fig. 4.17 is a thermally broadened step in

the negative bias region (in first order), which is due to a spin inversion. This is

better resolved in Fig. 4.18. The broadened step forms a plateau like structure in first

order and may develop into a peak-dip structure when additionally considering second

order contributions (for stronger polarization). For positive bias no spin inversion

is found, since the minority spin state is further suppressed due to the special AP

configuration as is seen in Fig. 4.7.

In the following we explain the origin of the broadened steps and the conditions, under

which peak-dip structures are observable in more detail. In Fig. 4.18 we present the

normalized shot noise in first and first plus second order (upper and lower left plots) for

the different polarizations. The probabilities for the spin ↓ and ↑ states are shown on

the right side and help to understand the underlying mechanism. In first order we find

an initially (small) peak at the resonance (at eVb/2Γ = 30) to change into a plateau

for stronger polarization (Fig. 4.18). The special configuration we consider here leads

to a spin inversion, i.e. the dot spin of the dot state equilibrium is effectively reversed
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Figure 4.18: Normalized shot noise in first (upper-left plot) and second (lower-left

plot) order and the corresponding probabilities for spin states σ1 =↓ and σ2 =↑
in first (upper-right plot) and second (lower-right plot) order, for the antiparallel

configuration vs. the bias voltage. Thermally broadened steps show up in first

order due to spin inversion. In second order correlation effects slightly modify the

steps towards a peak-dip structure.

once a sufficient bias is applied.

In first order changes in the probabilities are large. The noise increases within a bias

region of eVb/2Γ = −20 to −40. This increase saturates at a bias, where both spins

have about the same probability (within a window defined by the temperature). Here

both spins contribute to the transport and have the same importance, leading to a

thermally broadened plateau in the noise, when a finite polarization is present. If the

bias is increased further, the spin state ↑ begins to control the transport, i.e. p
(0)
↑ > p

(0)
↓ .

This effect becomes more pronounced for stronger polarization and leads to an increase

of the shot noise again. The crossover points in the probabilities define the middle of

the plateaus in the noise.

In second order, inelastic co-tunneling effects lead to a reduction of the probability to

be in state ↓ at lower bias, in favor of the state ↑. This leads to a shift to lower bias

of all features discussed above. Another effect is a stronger pronunciation of the first

order effects because of the interplay with co-tunneling processes. Plateaus (at stronger

polarization) in weak coupling situations hence may develop into peak-dip structures

for stronger coupling situations.

On the other hand we observe in Fig. 4.17 that peak-dip structures (due to a stronger

coupling) are destroyed for stronger polarization of the leads, when no such ’temper-



4.3. CO-TUNNELING 105

ature plateaus’ in first order are present. In these cases, no spin inversion takes place

and a stronger polarization only leads to a single dominating spin state. At the same

time the transport is reduced, since the system is stuck in this state.

For negative bias the system will be more and more often occupy the state with spin

↑ if the polarization is increased. It is difficult to empty the dot but also the doubly

occupied state or the state with spin ↓ can hardly be realized. This is why the noise

is reduced for any finite bias situation. If once the state ↑ is emptied, it will be filled

again with the same spin, if the state d is realized the state with spin ↑ follows again,

as well. The state with spin ↑ is the bottleneck of the transport and dominates such

that the state with spin ↓ gets unimportant.

For positive bias and large polarization the system will be stuck in the state with spin

↓. Since the probability to be in this state is relatively large even for low bias, the

polarization needs to be large enough to reduce the transport, with the spin ↓ state as

the bottleneck of the transport.

If we consider the unpolarized situation p = 0 again, it might surprise that there are

peak-dip structures at the first and last steps in the shot noise, but not at the middle

step. We found a competition between the spin states to be crucial for the observation

of a peak-dip structure. A peak arises, when the change in the probabilities is maximal

and a dip, when the probabilities begin to be in a stable distribution. In Fig. 4.17 at

the middle step (eVb/2Γ = 50) the transitions between ↑ and d come into play, whereas

transitions ↓↔ d are still forbidden. This destroys the spin competition.

These structures are absent for smaller spin-splitting as well as vanishing Coulomb-

interaction. Since for ∆ → 0 the probabilities to be in state ↓ or ↑ are the same, we

can say that the system is ’blind’ to the spin and only sees electrons in general tunneling

through it. If the system treats both spins equally, none of the two states dominates

the other and thus there is no competition between these, which would correlate the

electrons. The system is not interested in which spin contributes to the processes.

For vanishing Coulomb-interaction U on the other hand, a competition between singly

occupied states is destroyed, since either only one spin state or already the doubly

occupied state are dominating the transport. Here, spin ↓ or ↑ may have totally

different probabilities, such that the system detects very well the state contributing to

the transport. But again the situation is somehow simple. The system knows how to

treat the different spins, since one is allowed to contribute and the other not. The role

of the spins is determined very well, there is no competition.

The competition of spin states is the underlying mechanism to super-Poissonian noise

also in the case of dynamical bunching and blocking effects. It should be noted that the

absolute values of the probabilities (which may be very different for the two effects) are

not necessarily sufficient to decide about the absence or presnce of correlation effects.

We close the discussion of the antiparallel configuration with the Fano factor as shown
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Figure 4.19: Fano factor vs. bias voltage in the antiparallel configuration for

different polarization of the leads. An increase of the spin ↑ for negative bias leads

to stronger positive correlations in the Fano-factor, whereas a decrease of the same

for positive bias reduces the Fano-factor towards a Poissonian value.

in Fig. 4.19. Compared to the unpolarized situation (black lines) no significant change

between first and second order can be observed. Poissonian and super-Poissonian

behavior of the Fano-factor is still determined by the energy scales εco−εseq in first and

εco in second order. For polarized leads, the super-Poissonian Fano factor is enhanced

further in the negative bias region, but suppressed towards a Poissonian value in the

positive bias region. This is consistent with our findings that an enhancement of the

spin ↑ leads to stronger correlations at negative bias and the suppression of the same to

weaker correlations at positive bias. Additionally, in-elastic co-tunneling processes are

stronger pronounced at negative bias (compare configuration AP at negative bias in

Fig. 4.7), which results in a shift of the peak in the Fano factor towards the co-tunneling

scale. For positive bias these processes are blocked and lose their importance (AP at

positive bias in Fig. 4.7). Hence the decreasing peaks shift towards the sequential

threshold.

In the following we consider the parallel configurations P+ and P− (see Fig. 4.7).

In agreement with earlier works (e.g. [155, 153, 154]) we find that a bunching of

electrons may lead to a super-Poissonian behavior in the Fano-factor also in the finite

transport regime (analytical expressions in first order have been presented in section

4.2). However, since this behavior arises from a finite polarization, a suppression of

first order processes may give more importance also to second order processes that

provide another channel for the transport. This can invalidate first order results, if the

polarization (asymmetry of the couplings) becomes so large that second order processes
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Figure 4.20: Normalized shot noise in the configuration P+ for different polariza-

tions of the leads. First order processes may be suppressed even at finite transport

below second order contributions resulting in stronger deviations there.

dominate, as we can see in Fig. 4.20. We want to stress here that the probabilities

compared to the unpolarized case (see Fig. 4.16) are almost unchanged even for stronger

polarization in the overall bias region.

Below eVb/2Γ = 30 in Fig. 4.20, the probability to be in state ↓ is practically unity and

stronger polarization will reduce the importance of the state with spin ↑ further. The

vanishing of a transport channel consequently leads to a reduction of the noise. Above

eVb/2Γ = 30 however, the noise is significantly enhanced due to correlation effects

(dynamical bunching [153, 154]). In section 4.2, we discussed this effect within a first

order picture. In second order however, there will be a non-vanishing contribution

of co-tunneling processes in which the doubly occupied state is realized. This will

reduce the probability of the spin ↑ state, pushing more weight on the dominating

spin ↓ state, thus reducing the correlations. Indeed, this effect is considerably large,

since we find a deviation of about 10 percent between first and second order, which is

an effect 20 times larger, as we would expect in the unpolarized case for the overall

coupling Γ/kBT = 1/2 under consideration. In other words, first order calculations

would give the correct results only, if the coupling were about 20 times smaller. The

correlations in Fig. 4.20 break down at eVb/2Γ = 50, where the doubly occupied state is

available via sequential processes. Both spins have the same role now, since transitions

between ↓↔ 0 and ↑↔ d are possible and the empty and doubly occupied states gain

importance.

The situation for the P− configuration is somehow different. In Fig. 4.21 we find

the shot noise to be strongly enhanced even before the sequential threshold. Here
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Figure 4.21: Normalized shot noise in the configuration P− for different polar-

izations of the leads. Correlations leading to an enhanced noise may persist over

almost the whole bias regime, if corresponding processes are suppressed.

the state with spin ↑ (with small probability) is occupied easily when spin ↓ state is

once depleted (via the propagator P or co-tunneling processes). This gives the state

↑ more importance. At the threshold, this effect reaches a maximum, broadened by

the temperature (in first order ∼ 5kBT = 10Γ). Above the threshold the role of the

spins is reversed compared to the P+ configuration in the same bias regime. In first

order, the noise therefore shows the same behavior as before, whereas co-tunneling

processes involving the doubly occupied state are suppressed such that second order

corrections are much smaller here. Due the suppression of transitions ↑→ d even above

eVb/2Γ = 50 the noise remains strongly enhanced. A symmetric role of the spins is

reached only in the large bias regime, where all channels are available for transport

and probabilities are equilibrated again.

If the correlation effects we discussed for the to parallel configurations are strong

enough, this results in a super- Poissonian noise behavior in the Fano-factor, as can

be seen in Figs. 4.22 and 4.23. For the configuration P+ the Fano-factor is reduced

towards a Poissonian value in the Coulomb-blockade regime, both in first and second

order as the polarization is increased. Above the sequential threshold the correlation

effects as discussed for the noise enhance the Fano-factor, which gets super-Poissonian

for polarizations between p = 0.5 and p = 0.7. Second order processes reduce these

effects, such that the Fano-factor will have sub-Poissonian values, where first order

calculations would already predict super-Poissonian behavior. Again second order ef-

fects are relevant unless Γ is reduced more than one order of magnitude further than

considered here. The contributing first order processes are suppressed below second

order contributions due to strong polarization here.
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Figure 4.22: Fano-factor vs. bias voltage in the configuration P+ for different

polarization of the leads. Suppression of correlations in the Coulomb-blockade

regime reduce the Fano-factor, an enhancement of correlations above the sequential

threshold may lead to super-Poissonian noise. Second order co-tunneling processes

may avoid this.

In the P− configuration (Fig. 4.23) the Fano-factor turns out to have super-Poissonian

behavior in the overall bias regime (for polarizations stronger than p = 0.5), up to the

last excitation energy at eVb/2Γ = 90. This is due correlations of the two spin states,

which vanish only at large bias, where all states contribute the same way to transport.

In summary, we have found that the inclusion of co-tunneling effects besides sequen-

tial processes is of relevance in the Coulomb-blockade regime, even in a an assumed

weak coupling situation. New energy scales show up in the Coulomb-blockade regime,

which are due to possible inelastic second order excitations. Non-monotonicities in

the Fano factor allow for access to further information about electronic structure, in-

teraction or charging effects, probability distributions (and hence indirectly relevant

transport channels) and coupling parameters. The current alone could not yield such

an amount of information. First order results turn out to be of questionable use in the

Coulomb-blockade to describe the relevant physics, since even at very small coupling,

higher order contributions change the physical picture significantly.

For intermediate coupling situations second order effects change the structure around

excitation energies which define the position of steps in the noise at finite bias volt-

age. These steps are due to correlation effects arising from competing spin states (or

localized states in a multi-level structure) and should be measurable in an experiment.

For finite polarization of the leads an enhanced shot noise can be observed in the

parallel configuration, which may result in a super-Poissonian behavior of the Fano
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Figure 4.23: Fano-factor vs. bias voltage in the configuration P− for different

polarization of the leads. Strong correlations in the Coulomb-blockade regime

lead to a further growing super-Poissonian noise, which gets Poissonian (for strong

polarization) only in the large bias regime. Second order co-tunneling processes

are less relevant here.

factor. Deviations between first and second order stress the importance of higher order

contributions even in the finite transport regime. Generally speaking, whenever first

order processes are suppressed below second order ones in the transport regime, a

combined picture of both orders becomes important. This is obviously the case for

strongly asymmetric coupling parameters.

We encountered thermally broadened steps and peaks, non-monotonic peak-dip struc-

tures, enhanced shot noise, sub- and super-Poissonian noise, all being features under-

standable only in a combined picture of first and higher order transport. By explaining

the physical mechanisms behind these effects, the shot noise thus can be used as a spec-

troscopic tool to identify important transport parameters.



4.4. TOWARDS A DESCRIPTION OF MOLECULES 111

4.4 Towards a description of molecules

The model systems we discussed so far describe, strictly speaking, rather localized

quantum dot systems than realistic molecules. However, we showed in chapter 2 the

possibility to explain a number of experimental features of molecular transport (an

even better understanding can be expected with additional shot noise measurements).

Furthermore we showed in chapter 3 the possibility to do calculations for more complex

systems approaching realistic molecular transport situations. This involves calculations

for systems with a complex electronic structure, interaction effects, relaxation (photon),

vibration (phonon) or even geometric effects. The molecule specific parameters need

to be determined within quantum chemical calculations to reduce the number of free

parameters (orbitals). Higher order calculations assure that the finite transport current

and shot noise describe the intermediate coupling situation adequately and capture the

relevant physics in each transport regime.

However, one point we did not consider so far is the spatially delocalized nature of

molecular orbitals. This feature can be modeled by considering a number of levels

(or quantum dots) coupled in series (often called ’artificial molecules’). In the present

section we therefore study the current and shot noise for a chain of three coupled

quantum dots or single levels (model C in chapter 4.1). This is to show on the one

hand that a description of delocalized molecular orbitals poses no problem, and on the

other that new transport mechanisms are possible that only exist in spatially extended

systems.

We focus on the weak coupling regime again and choose the energies of the three levels

to be equal with ε = −2000Γ, with an inter-dot hopping t = 400Γ. Furthermore,

we set U = 2400Γ (intra-dot Coulomb-repulsion), Unn = 1000Γ (inter-dot Coulomb-

repulsion) and consider the temperature to be kBT = 5Γ. The bias voltage is chosen

symmetric with coupling parameters ΓL
1 = ΓR

3 = Γ/2. From our former findings, we

know that for a symmetric coupling a monotonic growth of current and shot noise is

expected, resulting in a Fano factor with values between 1/2 and 1. However, as we

see in Fig. 4.24 this does not necessarily have to be the case. We plot the current and

shot noise (I(1), S(1)) normalized to Inorm = (e/2~)Γ and Snorm = (e2/2~)Γ vs. the

bias voltage eVb/2Γ in the left panel of Fig. 4.24 and the Fano factor F (1) in the right

panel. We find not only a non-monotonic behavior of the shot noise, but even a strong

enhancement, resulting in a super-Poissonian Fano factor.

The current shows generic behavior, i.e. stepwise increase and only a tiny NDC around

eVb/2Γ = 850. The noise, however, is tremendously enhanced, with the Fano factor

F > 1 indicating its super-Poissonian nature over a large bias range, before recovering

“normal” behavior beyond a bias of eVb/2Γ = 1000. Note the similar behavior as

compared to the single level system coupled to ferromagnetic leads. There, ’dynamical
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Figure 4.24: Current I and shot noise S vs. voltage for three coupled dots with

kBT = 5Γ, t = 400Γ, ε = −2000Γ, U = 2400Γ , Unn = 1000Γ. The noise is

strongly enhanced in absolute magnitude above eVb/2Γ ∼ 400, while the current

only slightly increases, leading to a Fano factor F > 1. This is due to a competition

of ”fast” and ”slow” transport channels. The noise scales like (Unn/t)
2 in this

regime, while the current saturates as t is lowered. Above eVb/2Γ ∼ 1000 ”normal”

behavior resumes, as the ”slow” channel of transport is ”cut short” (see text).

bunching’ due to competing spin states with large and small probabilities has been

due to a finite polarization and hence an asymmetric coupling situation. The physical

mechanism leading to the behavior we observe here is different.

As before, we need strong electron interactions (U,Unn ≫ kBT ) to have the various

states compete in transport. The outcome of this competition is determined by the

wave functions of the competing states that effectively generate state dependent tun-

neling transition rates. Finally, the total spin of the states in question can differ by

more than the electron spin 1/2 , so some energetically and spatially possible transition

rates vanish due to spin selection rules. The dominance of the non-local interaction

Unn over the hopping t, leads to a strong modification in the spatial distribution of the

relevant many-body wave functions compared to a case of vanishing Unn. Considering

the 9 states with total spin 1 in the q = 2 charge sector (these split into three triplets),

we find if Unn < t, the triplet with lowest energy (T1) will prefer to have electrons

on the middle dot, to maximize the kinetic energy. On the other hand, if Unn > t

the lowest triplet prefers to have one electron each on the leftmost and the rightmost

dot, thus minimizing both intra-dot and inter-dot Coulomb repulsion. This change in
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the nature of the lowest triplet wave function is crucial for the ”noisy” transport. An

equally fundamental role plays the total spin 3/2 quadruplet, the second excited state

in the q = 3 charge sector. Due to spin selection rules these quadruplet states can

only have tunneling transitions to the triplet states of the q = 2 (or q = 4) charge

sectors. It turns out that the transitions between the lowest triplet and the quadruplet

form a ”slow” channel of transport. The transition rate between them is suppressed

by a factor ∼ (t/Unn)2, as the tunneling can happen only at the interface dots, but

the wave functions of the triplet and quadruplet mainly differ by an electron in the

middle dot. The current effectively alternates between ”fast” tunneling sequences be-

tween the well connected doublet and singlet states, and the ”slow” sequences between

the lowest triplet and quadruplet states, leading to the super-Poissonian noise in the

corresponding bias regime. A more detailed discussion is given in Ref. [12].

As the enhancement of the noise is based on spin quantum numbers we expect it

to be robust to standard relaxation processes involving phonon and photon emission.

A strong magnetic field will modify the details, but not the generic behavior of the

transport.

The discussion of the present chapter showed that higher order transport calculations

as well as more complex model systems drastically complicate the study of transport

properties in molecules or quantum dots. However, characteristic features showing up

in the shot noise and/or the Fano factor, but not in the current, allow for a much better

understanding of transport and for a determination of unknown system parameters in

comparison to experiment.
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5 Conclusions

In the following we summarize the main ideas and achievements of this thesis. We

stress the novelties compared to existing works and provide an outlook and sugges-

tions for further efforts in this field.

In this thesis we have presented a theory of current and shot noise in systems

like quantum dots or molecules that allows us to push towards an intermediate cou-

pling regime in the molecule-electrode coupling. We have encountered non-Markovian

memory effects that manifest themselves in the higher order shot noise in the finite

transport regime. Our theory takes into account arbitrary two-particle interaction ef-

fects and is valid for arbitrary bias situations. The main constraint of the theory is

given by the ratio of the coupling strength Γ over the temperature kBT , which should

not exceed unity.

Our theory was applied to a shot noise measurement on self-assembled InAs quantum

dots which we have discussed in chapter 2. We find an agreement of experiment and

theory, since a predicted Fano factor with values between 1/2 and 1 in a situation

of weak coupling is observed and allows to self-consistently determine the absolute

strength and asymmetry of the coupling parameters.

The special relevance to study the co-tunneling current and shot noise in molecules

has been illustrated for an experiment on a terphenyl-type molecule. In this case only

a current measurement has been realized. Data on shot noise are not yet available.

We have modeled the experiment by a single-level system and find a finite Coulomb-

interaction as well as asymmetric coupling parameters to explain the current and con-

ductance curves in an intermediate coupling regime. A definite determination of the

underlying transport parameters would be possible with additional shot noise data. We

furthermore find that more than a single level (molecular orbital) is needed to quan-

titatively describe the experimental data. An extension of our calculation to describe

multi-level systems in an intermediate coupling regime is straightforward within our

theoretical approach.

This approach relies on a diagrammatic technique on the Keldysh contour following

a microscopic many-body description of the transport problem. Our theory as pre-

sented in chapter 3 expresses the current and shot noise in terms of transition rates

(or irreducible self-energy diagrams denoted by us as W). These rates contain the

full information about the whole transport properties, as do the Green functions in

non-equilibrium Green function techniques (NEGF) or the scattering matrix in a scat-

tering approach. In all existing theories an access to those functions is needed in order

to address the transport problem. In our case, this access is provided by self-energy

diagrams, which we expand up to first order in the coupling (sequential tunneling),

and then up to second order (co-tunneling), where we find that non-Markovian

memory effects start to play a role in the shot noise (not in the current).
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For the case of finite frequency noise, we have shown the equivalence to our zero-

frequency noise formula in the limit ω → 0. This gives our theory a better footing and

additionally allows for a better physical understanding of the non-Markovian memory

effects in higher orders. The calculation of frequency dependent noise poses no problem

within our diagrammatic technique and may be interesting as a future project. How-

ever, it is not of our concern, since we want to study molecules and quantum dots in a

frequency regime, where the shot noise behaves as white noise (frequency independent).

Our theory can also include coherence effects when taking into account additionally

non-diagonal elements of the density matrix. This modifies the equations which deter-

mine the probabilities pst and ’propagator’ P but still allows a description in terms of

transition rates. Indeed, this would be an interesting extension of our theory, since for

molecules, described in general by delocalized orbitals (similar to several quantum dots

coupled in series), coherence effects may play a role. Transport through delocalized

levels can be described within the present theory only in a regime, where the coupling

to the reservoirs is small compared to an inter-dot coupling.

Higher order correlators of the current operator can be expressed in terms of

transition rates as well. They are non-trivially related to higher derivatives of a so

called cumulant generating function (CGF) with respect to a counting field in full

counting statistics (FCS). A theoretical description of higher correlators and a study

of the relation to the CGF is at first a technical challenge. This is especially relevant

with respect to forthcoming experiments on skewness (third correlator), where however

at the moment it is not clear at all whether a higher correlator or a higher cumulant

is measured. A theory of higher correlators will gain importance in the future, since

compared to the shot noise additional information about transport processes can be

extracted from them. An advantage of our approach to the FCS is the relatively

simple handling of arbitrary complex nanoscale systems, as calculation of current and

shot noise is reduced to the task of computing a certain number of transition rates.

Although the number of rates grows rapidly with the number of system states, the

calculation is effectively reduced to a question of bookkeeping only. A translation

of the diagrammatic rules into a computer code is straightforward and facilitates the

tedious work of doing the calculations of the rates by hand. Parts of this work has been

implemented already. The availability of a program code would be a real advantage

since many states of the system can be included immediately and a description of multi-

level quantum dots or molecules is made possible in an easy way. Considering different

geometries, including arbitrary interaction effects and allowing vibrational (phonons)

or relaxation (photons) effects, will enable a realistic description of transport through

mesoscopic systems within a microscopic theory.

Our discussion of many possible extensions shows that this theory by no means is

restricted to only describe current and zero frequency shot noise in zero dimensional

quantum dots in the weak coupling limit.
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But of course, a natural way to understand the physics of transport is to start with the

simplest system and complicate matters afterwards. As we have seen in the discussion

of the experiments summarized above, even with simple models we were able to explain

the observed features to some extent.

This is why we have studied current and shot noise in the weak coupling for a single-

level system in detail in chapter 4. The extension to a multi-level system with a variety

of effects which may occur in realistic nanoscopic systems (e.g. molecules) has been

discussed afterwards. Co-tunneling processes in the shot noise play an important

role, even in the weak coupling limit, when studying the Coulomb-blockade regime.

Both, current and noise are strongly suppressed in this regime and the consideration

of their ratio in terms of the Fano factor may be technically possible and provide some

informations even within orthodox theory. But dividing a zero by zero may lead to any

result, which makes a higher-order calculation necessary to prove or disprove the find-

ings. With our co-tunneling results we show that first order predictions are sometimes

physical, sometimes un-physical, but are usually modified, even in typical weak cou-

pling situations. This is the first time that shot noise in the Coulomb-blockade regime

has been discussed consistently, including the crossover to the sequential transport

regime. In the case of ferromagnetic leads, we have found even stronger modifications

of the shot noise in second order compared to the sequential tunneling limit. Inter-

action effects and an external magnetic field exhibit much stronger signature in the

noise (for certain system configurations and polarizations) which allows us to make

predictions or to analyze electronic and transport properties of future experiments.

We may summarize the results on current and shot noise in molecules and quantum

dots within a combined picture of sequential and co-tunneling transport as follows:

1) From first order calculations, plateau values depending on the coupling parameters

of the system can be determined for current, shot noise and Fano factor for all finite

transport regimes and complex electronic structures of the system. Here, the self-

consistent determination of coupling parameters, being most relevant for the transport,

is possible when comparing sequences of plateaus as additional transport channels open

up when increasing the bias voltage. Besides the typical values of the Fano factor

between 1 and 1/2, a super-Poissonian noise with F > 1 can be observed, when the

symmetry of the system is broken due to asymmetric couplings (for localized systems)

or strong interaction effects being responsible for a special non-local electronic structure

(for delocalized systems). The main mechanisms are dynamical bunching or blocking

effects, leading to competition among transport channels involving states with different

total spins, levels, etc. Often a negative differential conductance (NDC) combined with

suppressed shot noise can be observed as consequence, but also a strongly enhanced

shot noise is possible. Such behavior may be destroyed due to relaxation effects or

higher order tunneling processes, but this must not be so in general.
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Even values of the Fano factor below 1/2 are possible, when transport channels do not

contribute independently, but condition each other to enable transport through the

system. Such a behavior is found in multi-level systems in the presence of relaxation

effects in situations similar to diffusive wires.

2) Second order calculations are most important in the Coulomb-blockade regime, where

a new energy scale due to inelastic co-tunneling processes shows up. We find elastic co-

tunneling processes to destroy any super-Poissonian behavior that would result from

a pure first order calculation, whereas inelastic co-tunneling processes can enhance

the noise to super-Poissonian values again. Inelastic co-tunneling processes give rise

to characteristic transport behavior especially for magnetically polarized leads, where

spin accumulation or spin inversion may be observed for stronger polarization. A

finite spin-splitting due to a magnetic field and a finite Coulomb interaction lead to

complex non-monotonic behavior of the Fano factor in the Coulomb-blockade regime.

Information about the internal electronic level structure of the system, interaction

effects, asymmetric coupling parameters, etc. is thus extractable from experiments on

shot noise. The inclusion of co-tunneling processes is necessary, even for weak coupling

situations (as typically observed in experiments with quantum dots) since current and

shot noise are only algebraically suppressed, in contrast to the exponential suppression

in first order. This makes the Fano factor a sensitive measure of transport in a large

range of the coupling strength.

3) Whereas the sequential tunneling picture holds mostly on the plateaus, and the

co-tunneling picture is dominant in the Coulomb-blockade regime, both processes are

relevant in the crossover between different transport regimes, i.e. around the step

structures, where new excitations of the system become possible. Here, the shot noise

shows complex peak and dip structures due to the interplay of both types of processes.

Large peaks in the shot noise may be due to strong polarizations of the leads (in spin-

dependent transport) or suppressed couplings (in multi-level systems) and often appear

in connection with dynamical electron bunching. Thermally broadened plateaus appear

together with spin inversion (or inversion of level occupations in multi-level systems)

and may result in a peak-dip structure for stronger coupling situations (when co-

tunneling processes start to dominate). The fact that the variety and strength of these

step structures does not appear at every excitation step allows for further extraction

of information about channels involved in transport.

In conclusion, the use of shot noise as a spectroscopic tool will help to understand

mesoscopic systems in much more detail, making a controlled manipulation of nanofab-

ricated devices for technological applications a distinct possibility in the near future.
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A Appendix: Diagrammatic Rules

We present the diagrammatic rules for a calculation of the irreducible blocks W, as

discussed in chapter 3. In Ref. [129] such rules have been given for blocks denoted by

Σ being trivially related to our objects Σχχ′ = iWχ′χ. In Ref. [6], we presented the

rules for W, expanded to also include bosonic degrees of freedom in Ref. [7].

A.1 Time space

In time space, the rules for calculating the irreducible blocks W describing electron

tunneling and relaxation are as follows:

1) For a given order k draw all topologically different diagrams with 2k vertices con-

nected by k tunneling (electron) lines or boson (photon) lines (for orders k ≥ 2 both

kinds of lines might be contained in a diagram). Assign a reservoir index r and a spin

index σ to each of the tunneling lines and an index q for the boson lines. Assign states

χ and energies Eχ to the propagators.

2) The propagation from t′ to t with t′ < t on the Keldysh contour implies a factor

exp[−iEχ(t− t′)].

3) Each vertex containing dot operators Bn (with n different operator structures) gives

rise to a matrix element 〈χ′|Bn|χ〉, where χ (χ′) is the dot state entering (leaving) the

vertex with respect to the Keldysh contour (for the general Hamiltonian as introduced

in chapter 3 we find: B1 = c†iσ, B2 = ciσ, B3 = c†iσcjσ).

4) Each directed tunneling line with index r running from t′ to t implies γ±riσ(t− t′) =

Γiσ
r /2π

∫∞

−∞
dωl f

±(ωl − µr) e
−iωl(t−t′) (with f+(x) = f(x) for t < t′ and f−(x) =

1 − f(x) for t > t′ and f(x) = 1/[exp(x/kBT ) + 1] being the Fermi function). In

the same way, contributions of a boson line with index q running from t′ to t imply

b±(t − t′) =
∫∞

−∞
dωl sign(ωl) αph(ωl) nb(±ωl) e

−iωl(t−t′) (with nb(+x) for t < t′ and

nb(−x) for t > t′ and nb(x) = 1/[exp(x/kBT ) − 1] being the Bose function.

5) There is an overall prefactor (−i)m(−1)c, where m is the total number of internal

vertices and c the number of crossings of tunneling lines (no bosonic lines) plus the

number of vertices connecting the state d with ↑.

6) Integrate over the internal times along the Keldysh contour without changing their

ordering and sum over the reservoir, spin and level indices.
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A.2 Energy space

In energy representation the rules for calculating the irreducible blocks W, describing

electron tunneling and relaxation are as follows:

1) For a given order k draw all topologically different diagrams with 2k vertices con-

nected by k tunneling (electron) lines or boson (photon) lines (for orders k ≥ 2 both

kinds of lines might be contained in a diagram). Assign the energies Eχ to the propa-

gators, and energies ωl (l = 1, ..., k) to each one of these lines.

2) For each of the (2k−1) segments enclosed by two adjacent vertices there is a resolvent

1/(∆Em + i0+) with m = 1, ..., 2k − 1, where ∆Em is the difference of the left-going

minus the right-going energies.

3) Each vertex containing dot operators Bn (with n different operator structures) gives

rise to a matrix element 〈χ′|Bn|χ〉, where χ (χ′) is the dot state entering (leaving) the

vertex with respect to the Keldysh contour (for the general Hamiltonian as introduced

in chapter 3 we find: B1 = c†iσ, B2 = ciσ, B3 = c†iσcjσ).

4) The contribution of a tunneling line of reservoir r is γ±riσ(ωl) = Γiσ
r /2π f

±(ωl − µr),

taking the plus-sign if the line is going backward with respect to the closed time path,

and the minus-sign if it is going forward. The same way the contribution of a bosonic

line is given by b(±ωl) = sign(ωl) αph(ωl) nb(±ωl).

5) There is an overall pre-factor (−i)(−1)c, where c is the total number of vertices on

the backward propagator plus the number of crossings of tunneling lines (no bosonic

lines) plus the number of vertices connecting the state d with ↑.

6) Integrate over the energies ωl of the tunneling and boson lines and sum over all

reservoir and spin indices.

We additionally introduce the rules to determine diagrams with external current ver-

tices in energy representation as we need to calculate the current and shot noise con-

tributions. The blocks WI and WII are determined in a similar way to W. The only

difference to W is that in WI (WII) one (two) internal vertices are replaced by exter-

nal ones representing Î~/e. This amounts to multiplying an overall pre-factor, which

arises due to the definition of the current operator and since the number of internal

vertices on the backward propagator may have changed. The additional rules therfore

read:

7) Assign a factor +1/2 for each external vertex on the upper (lower) branch of the

Keldysh contour which describes tunneling of an electron into the right (left) or out of

the left (right) lead, and −1/2 in the other four cases.

8) Sum up all the factors for each possibility to replace one (two) internal vertices by

external ones.
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Remarks:

a) For a description of frequency dependent noise, there is an additional frequency line

ω besides the energies Eχ and ωl running in a fixed direction and spanned between two

external current vertices for WII , or entering (leaving) a diagram to (from) a current

vertex for WI , or running through the whole diagram for W.

b) In order to compute higher correlators, rules 7) and 8) remain unchanged, but there

may appear more than two external vertices.

c) When taking into account off-diagonal elements of the density matrix to describe

coherence effects, there are diagrams with contributions tqtq′ (q, q′ being different quan-

tum numbers) instead of |tq|2 ∼ Γq, leading to modified rules.

d) First and second order rates calculated due to the rules defined here, are presented

in appendices B and C. In lowest (first) order, diagrams containing one tunneling or

boson line have to be calculated.

HT

HTχ’

r

χ

Figure A.1: An example of a first order diagram used to calculate the stationary

probabilities and the object P for the shot noise.

An example for a diagram describing the coupling to the electronic reservoirs is shown

in Fig. A.1. The coupling to a bosonic bath is illustrated by a diagram containing a

wiggly line (Fig A.2).

χ

HB−D

χ ’
HB−D

q

Figure A.2: An example of a first order diagram describing the coupling to a

bosonic bath.
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It is obvious, that in lowest order fermionic and bosonic processes occur independently

(due to their incoherent, sequential nature). For higher order processes however, there

may be also diagrams containing both kinds of lines, fermionic (tunneling) and bosonic

ones at the same time. Such diagrams are also relevant for processes contributing to

the rates WI and WII . A schematic example for relevant second order diagrams is

given in Fig. A.3. All three kinds of diagrams contribute to rates W. However only

Figure A.3: In second order there may be diagrams containing two tunneling lines

(upper figure), one tunneling and one boson line (middle figure) or two boson lines

(lower figure).

the tunneling lines (dashed lines) can contain an external current vertex. Therefore

diagrams like the lower one in Fig A.3 can not contribute to rates WI or WII , but

those like the middle can.
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B Appendix: Sequential tunneling rates

We present the first order matrix elements of transition rates W(1), W(1)I and W(1)II

calculated by application of the rules from appendix A, needed to compute the current

and shot noise as derived in chapter 3. The rates allow for a description of a multi-

level system (N with i, j = 1 · · ·N) with spin σ under inclusion of bosonic degrees of

freedom.

B.1 Transition rates W

The total transition rates W
(1)
χ,χ′ (in the absence of relaxation) are the sum of transition

rates associated with electron tunneling through either the left or the right barrier,

W
(1)
χ,χ′ = W

(1)R
χ,χ′ + W

(1)L
χ,χ′ . The inclusion of bosonic degrees of freedom, e.g. to describe

relaxation processes as discussed in chapter 4, we have to consider additional rates

W
(1)ph
χ,χ′ . Assuming weak coupling to the bosonic bath (in addition to weak tunneling),

we only keep contributions to either first order in αph or to first order in Γ. The total

transition rates are, thus, given by W
(1)
χ,χ′ = W

(1)L
χ,χ′ + W

(1)R
χ,χ′ + W

(1)ph
χ,χ′ , where W

(1)ph
χ,χ′

describe pure relaxation while W
(1)L
χ,χ′ and W

(1)R
χ,χ′ models pure tunneling. The additivity

of pure tunneling or boson rates is given only in lowest order, where only single lines

are present in diagrams. Together with Γiσ
r = 2π|triσ|2ρe we find

W
(1)r
χ′,χ = 2πρe

∑

σ



f+
r (Eχ′,χ)

∣

∣

∣

∣

∣

∑

i

triσ〈χ′|c†iσ|χ〉
∣

∣

∣

∣

∣

2

+ f−
r (−Eχ′,χ)

∣

∣

∣

∣

∣

∑

i

triσ〈χ′|ciσ|χ〉
∣

∣

∣

∣

∣

2




(B.1)

for χ′ 6= χ, together with W
(1)r
χ,χ = −

∑

χ′ 6=χW
(1)r
χ′,χ (sum rule). Eχ′,χ = Eχ′ − Eχ

is the energy difference between the many-body states χ and χ′. Here, f(x) =

1/(exp (x/kBT ) + 1) is the Fermi function, f+(x) = f(x) and f−(x) = 1 − f(x),

and f±
r (x) = f±(x− µr). The bosonic rates are

W
(1)ph
χ′,χ =

∑

σ

b(Eχ′,χ)

∣

∣

∣

∣

∣

∑

i6=j

〈χ′|c†iσcj̄σ|χ〉
∣

∣

∣

∣

∣

2

(B.2)

for χ′ 6= χ, and W
(1)ph
χ,χ = −

∑

χ′ 6=χW
(1)ph
χ′,χ , where b(x) = sign(x) αph(x) nb(x), with the

Bose function nb(x) = 1/(exp (x/kBT )−1). This allows to build the matrix blocks W(1)

to calculate the objects p(0)st and P(−1). The presence of relaxation therefore leads to

a modification of the probabilities and propagators P(−1), whereas the matrices W(1)I

and W(1)II are not affected (due to only one tunneling line). The results obtained here

could be calculated within a golden rule approximation as well. Diagrams associated

with the rates Eqs. B.1 and B.2 have been shown in appendix A.
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B.2 Current rates WI

The matrix elements of W(1)I are given by

W
(1)I
χ,χ′ = (W

(1)R
χ,χ′ −W

(1)L
χ,χ′ )(Θ(Nχ −Nχ′) − Θ(Nχ′ −Nχ)) (B.3)

with the Heaviside θ-function, where Nχ is the total number of electrons on the dot

within the state χ. This permits the computation of the first order current I(1). An

example of a corresponding diagram including one tunneling line is shown in Fig. B.1.

HTχ’

I
r

χ

Figure B.1: An example of a first order diagram contributing to the current.

B.3 Shot noise rates WII

Correspondingly we find for the matrix elements of W(1)II

W
(1)II
χ,χ′ =

1

4
(W

(1)R
χ,χ′ +W

(1)L
χ,χ′ )(1 − 2 δχχ′) (B.4)

with the Kronecker δ. This is the last missing object to compute the shot noise in first

order S(1). In first order there is only one possibility to place the two current vertices,

as shown in Fig. B.2.

χ’ χ

I
r

I

Figure B.2: An example of a first order diagram contributing to the shot noise.
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C Appendix: Co-tunneling rates

For the calculation of the second order current and shot noise contributions we need to

determine additional objects compared to the ones evaluated in appendix B (see current

and noise formulas in chapter 3). The remaining objects are ∂W(1), ∂W(1)I ,W(2),W(2)I

and W(2)II . With these objects, we can immediately compute p(1)st,P(0), I(2), S(2) and

thus I = I(1) + I(2) and S = S(1) + S(2). Again the objects containing one or two cur-

rent vertices are calculated by applying the rules specified in appendix A. For the rates

W(2)I (W(2)II) up to four (six) combinations of placing these vertices are possible now,

each of them giving rise to a certain prefactor. In contrast to the first order diagrams,

a compact expression in terms of rates W without any current vertices is not possible

anymore for second order diagrams. This emphasizes the advantage of the diagram-

matic technique, which now facilitates the handling of a large number of irreducible

contributions by reducing the problem to a task of book keeping. We thus want to

restrict ourselves to a mathematical discussion of the main structure of diagrammatical

contributions to W(2). The rates ∂W(1), although being first order contributions, turn

out to have the same structure as second order rates because of the derivative.

Whereas in first order we had to evaluate a single integral over contributions which took

a rather simple form (since the application of the mirror rule allowed to identify a Dirac

δ-function), we now have to deal with a double integral. A first integral can always be

done due to the δ-function, but a second integral remains and leads to expressions

F±
riσ(ε) =

∞
∫

−∞

dω
γ±riσ(ω)

(ε− ω + iη)
(C.1)

and

B±(ε) =

∞
∫

−∞

dω
b(±ω)

(ε− ω + iη)
(C.2)

for diagrams coupling to fermionic or bosonic reservoirs. The functions γ±riσ(ω) and

b(±ω) are related to the Fermi and Bose functions (f(x), nb(x)) as defined in the

appendices A and B, the energy ε is composed of energies Eχ in general and η denotes

the convergence factor (or factor from the Laplace transformation), which is taken

in the limit η = 0+ at the end. [For the rates ∂W(1) only expressions of the kind

∂ηF
±
riσ(ε) and ∂ηB

±(ε) are relevant.] Since αph(±ω) in b(±ω) may include a more

complex form, we choose the simplest form here and consider all factors to be constant

(b(±ω) = αphnb(±ω)). In the following we thus show how to calculate integrals of the

type as given in Eqs. C.1 and C.2.
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C.1 Calculation of Integral F±

The integral C.1 diverges, since the integrand does not decay fast enough for |ω| → ∞
to close the integration contour in the upper or lower complex half plane. In order to

make the integral convergent, we introduce a Lorentzian cutoff

Dr(ω) =
X2

C

(ω − µr)2 +X2
C

(C.3)

with XC being the cutoff energy, which might be related to the Coulomb interaction

for a model with large U = 2XC . In general, results have to be independent of such

a parameter. We apply Cauchy’s Theorem by collecting all residua. This is done

easily, when considering the sum and difference of F+
riσ(ε) and F−

riσ(ε). The sum can

be immediately evaluated by closing the integration contour in the lower half plane,

since there is only one pole at ω = µr − iXC leading to

F+
riσ(ε)+F−

riσ(ε) =
Γiσ

r

2π

∞
∫

−∞

dωDr(ω)
1

ε− ω + iη
=

Γiσ
r

2π
Dr(ε)

(

(ε− µr)π

XC
− iπ

)

. (C.4)

For the difference, we find

F+
riσ(ε) − F−

riσ(ε) = −Γiσ
r

2π

∞
∫

−∞

dωDr(ω)
tanh[β

2
(ω − µr)]

ε− ω + iη
(C.5)

with poles at ω = µr ± iXC , ω = ε + iη and ω = ωm = iπ(2m + 1)/β + µr for

m = 0,±1,±2, .... We close the integration contour in the upper and lower half plane

and take the average of these two terms leading to

F+
riσ(ε) − F−

riσ(ε) =
iΓiσ

r

2
{Dr(ε)

[

tanh

(

β

2
(ε− µr)

)

− tanh

(

iβXC

2

)]

(C.6)

− 2

β

∞
∑

m=0

[

Dr(ωm)

ε− ωm
− Dr(ω−m−1)

ε− ω−m−1

]

}

Now we use the digamma function ψ(z) = d[lnΓ(z)]/dz and its representation

ψ(x) − ψ(y) =
∞
∑

m=0

(

− 1

m+ x
+

1

m+ y

)

, (C.7)

and ψ(z∗) = [ψ(z)]∗, as well as ψ(1
2
− z) = ψ(1

2
+ z) + iπtanh(iπz), to arrive at

F+
riσ(ε) − F−

riσ(ε) =
Γiσ

r

2π
Dr(ε){2ψ

(

1

2
+
βXC

2π

)

− 2Reψ

(

1

2
+
iβ(ε− µr)

2π

)

(C.8)

+iπtanh

(

β

2
(ε− µr)

)

}.
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The sum and the difference of Eqs. C.4 and C.8 lead to the result

F±
riσ(ε) =

Γiσ
r

2π
Dr(ε){±ψ

(

1

2
+
βXC

2π

)

∓ Reψ

(

1

2
+
iβ(ε− µr)

2π

)

(C.9)

+π
ε− µr

2XC
− iπf±

r (ε)}.

Since XC >> max{ε, kBT, eVb} (where kBT = 1/β and eVb = µL−µR

2
), we can further

simplify the result and split into real and imaginary parts leading to

ReF±
riσ(ε) =

Γiσ
r

2π

[

±ln

(

βXC

2π

)

∓ Reψ

(

1

2
+
iβ

2π
(ε− µr)

)]

(C.10)

and

ImF±
riσ(ε) =

Γiσ
r

2π

[

−πf±
r (ε)

]

= −πγ±riσ(ε) (C.11)

The part with the logarithmic divergence in C.10 provides an universal factor (be-

sides the temperature dependence), and, when appearing in diagrams, cancels against

other diagrams, contributing with the opposite sign. Often contributions of the form

∂ωReF±
riσ(ω)|ω=ε are required which are independent of XC .

C.2 Calculation of Integral B±

The integral C.2 is calculated in an analoguous way, with the cutoff

D(ω) =
X2

C

ω2 +X2
C

, (C.12)

where the sum of B+(ε) and B−(ε) leads to

B+(ε) +B−(ε) = −αphD(ε)

[

επ

XC
− iπ

]

. (C.13)

For the difference, we find

B+(ε) − B−(ε) = αph

∞
∫

−∞

dωD(ω)
coth(βω

2
)

ε− ω + iη
(C.14)

with poles at ω = ±iXC , ω = ε + iη and ω = ωm = 2iπm
β

for m = 0,±1,±2, .... The

analoguous calculation to the one for integral C.1 leads to

B+(ε) − B−(ε) = iπαphD(ε)

[

2

βε
+ coth

(

iπ
βXC

2π

)

− coth

(

βε

2

)]

(C.15)

+
2iπαph

β

∞
∑

m=0

D(ωm+1)

[

1

ε− ωm+1
− 1

ε− ω−m−1

]

,
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that we can simplify to

B+(ε) − B−(ε) = 2αphD(ε)

[

− π

βXC

− ψ

(

βXC

2π

)

+ Reψ

(

1 +
iβε

2π

)]

(C.16)

+iπαphD(ε)

[

2

βε
− coth

(

βε

2

)]

by using ψ(1 + z) = ψ(z) + 1
z

and ψ(1 − z) = ψ(z) + iπcoth(iπz) additionally. Again

for XC >> max{ε, kBT, eVb}, we find from C.13 and C.16

B±(ε) = ±iπαph

βε
− iπαphn

±(ε) ∓ 2αphln

(

βXC

2π

)

± αphReψ

(

1 +
iβε

2π

)

, (C.17)

what we split again into

ReB±(ε) = ∓2αphln

(

βXC

2π

)

± αphReψ

(

1 +
iβε

2π

)

, (C.18)

ImB±(ε) = ±iπαph

βε
− iπαphn

±(ε). (C.19)

Again the part with the logarithmic divergence due to XC has to cancel among the

various diagrams, when doing a perturbation expansion up to second order.
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Phys. Rev. Lett. 88, 176804 (2002).

[72] M. Mayor, C. v. Hänisch, H. B. Weber, J. Reichert, and D. Beckmann, Angew.

Chem. 114, 1228 (2002).

[73] M. Mayor, H. Weber, J. Reichert, M. Elbing, C. von Hänisch, D. Beckmann, and

M. Fischer, Angew. Chem. Int. Ed. 42, 5834 (2003).

[74] R. M. Metzger, B. Chen, U. Hopfner, M. V. Lakshmikantham, D. Vuillaume,

T. Kawai, X. Wu, H. Tachibana, T. V. Hughes, H. Sakurai, J. W. Baldwin,

C. Hosch, M. Cava, L. Brehmer, and G. J. Ashwell, J. Am. Chem. Soc. 119,

10455 (1997).

[75] A. Vilan, A. Shanzer, and D. Cahen, Nature 404, 166 (2000).

[76] J. Chen and M. A. Reed, Chem. Phys. 281, 127 (2002).

[77] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999).

[78] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L.

McEuen, Nature 407, 57 (2000).

[79] J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta,

M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph,

Nature 417, 722 (2002).

[80] J. Reichert, H. B. Weber, M. Mayor, and H. v. Löhneysen, Appl. Phys. Lett. 82,
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[157] C. W. Beenakker and M. Büttiker, Phys. Rev. B 46, 1889 (1992).

[158] K. E. Nagaev, Phys. Lett. A 169, 103 (1992).

[159] I. Djuric, B. Dong, and H. L. Cui, IEEE transactions on Nanotechnology 4, 71

(2005).

[160] I. Djuric, B. Dong, and H. L. Cui, cond-mat/0411091 (2004).

[161] E. G. Mishchenko, Phys. Rev. B 68, 100409 (2003).

[162] M. Pioro-Ladriere, M. Ciorga, J. Lapointe, P. Zawadzki, M. Korkusinski,

P. Hawrylak, and A. S. Sachrajda, Phys. Rev. Lett. 91, 026803 (2003).

[163] M. Ciorga, M. Pioro-Ladriere, P. Zawadzki, J. Lapointe, Z. Wasilewski, and A. S.

Sachrajda, Phys. Rev. B 70, 235306 (2004).

[164] M. H. Hettler, H. Schoeller, and W. Wenzel, Europhys. Lett. 57, 571 (2002).



138 BIBLIOGRAPHY


	Abstract / Zusammenfassung

	Deutsche Zusammenfassung - Langversion
	Contents
	1 Introduction
	2 Motivation
	2.1 Shot noise: basic properties
	2.2 Experiments

	3 Theory
	3.1 Strong vs. weak coupling
	3.2 Hamiltonian
	3.3 Diagrammatic technique
	3.4 Current
	3.5 Zero frequency shot noise
	3.6 Finite frequency shot noise
	3.7 Higher correlators
	3.8 Off-diagonal elements and coherent processes

	4 Results
	4.1 Model Systems
	4.2 Sequential tunneling
	4.3 Co-tunneling
	4.4 Towards a description of molecules

	5 Conclusions
	A Appendix: Diagrammatic Rules
	A.1 Time space
	A.2 Energy space

	B Appendix: Sequential tunneling rates
	B.1 Transition rates W
	B.2 Current rates WI
	B.3 Shot noise rates WII

	C Appendix: Co-tunneling rates
	C.1 Calculation of Integral F±
	C.2 Calculation of Integral B±




